本文介绍了一种用于太空太阳能电池的温度加速寿命试验 (ALT)。该试验在黑暗条件下进行,以避免照明 ALT 固有的问题。该 ALT 是我们之前在黑暗条件下仅使用正向偏置的 ALT 的演变。现在,通过正向/反向偏置模拟太阳能电池的工作条件。正向偏置模拟照明下的电气性能,而反向偏置模拟日食期间或任何其他阴影事件(例如天线也可能投射阴影)的阴影。正向与反向时间比为 4:1。此外,当前 ALT 中使用的高温(190、210 和 230 ◦ C)可大大缩短测试时间。此次 ALT 在商用 GaInP/Ga(In)As/Ge 三结太阳能电池上获得的结果表明,退化模式与并联电阻的降低有关,即 GaInP 顶部子电池中发生分流引起的初始退化,随后 Ga(In)As 中间子电池中的并联电阻降低。当前 ALT 中的活化能 (1.06 eV) 高于之前的活化能 (0.88 eV)。反向偏置会促进与正向偏置类似的退化,但更强烈,即在更短的时间内。因此,反向偏置产生的可靠性明显低于之前没有反向偏置的 ALT。尽管可靠性有所降低,但在标称温度 80 ◦ C(许多 GEO 任务的典型温度)下,90% 可靠性的时间为 32 年连续运行。因此,这些太阳能电池似乎非常坚固,并且对于许多太空应用具有很高的可靠性。应该注意的是,这些数字仅与高温引起的退化有关,这里不考虑辐射等其他压力源。
摘要:太阳能驱动的二氧化碳还原是合成燃料和化学品的碳中性途径。我们在此报告使用光伏电池直接供电的气体扩散电极 (GDE) 进行太阳能驱动的 CO 2 还原的结果。GaInP/GaInAs/Ge 三结光伏电池用于为采用 Ag 纳米颗粒催化剂层的反向组装气体扩散电极供电。在 1 个太阳的模拟 AM 1.5G 照明下,该装置的太阳能到 CO 能量转换效率为 19.1%。使用反向组装 GDE 可防止催化剂床从湿润转变为充满,并使装置稳定运行 >150 小时而没有效率损失。在加利福尼亚州帕萨迪纳市的环境太阳光照下进行了户外测量,结果显示太阳能转化为二氧化碳的峰值效率为 18.7%,二氧化碳生成率为每天 47 毫克·厘米 −2,日平均太阳能转化为燃料的效率为 5.8%。
多结太阳能电池设计既要考虑理论上的最佳带隙组合,也要考虑具有这些带隙的材料的实际局限性。例如,三结 III-V 多结太阳能电池通常使用 GaAs 作为中间电池,因为 GaAs 的材料质量近乎完美,尽管其带隙高于全局光谱的最佳值。在这里,我们使用具有出色电压和吸收率的厚 GaInAs/GaAsP 应变平衡量子阱 (QW) 太阳能电池来修改中间电池的带隙。这些高性能 QW 被整合到一个三结倒置变质多结器件中,该器件由 GaInP 顶部电池、GaInAs/GaAsP QW 中间电池和晶格失配的 GaInAs 底部电池组成,每个电池都经过了高度优化。我们在 AM1.5 全局和 AM0 空间光谱下分别展示了 39.5% 和 34.2% 的三结效率,这高于之前创纪录的六结器件。
薄膜光伏(PV)电池是半导体技术中最重要的研究课题之一,能够有效地将太阳能转化为电能。1 – 6 单片三结电池(GaInP/GaInAs/Ge)因其高达 30% 大气质量零点(AM0)的效率而成为飞机和航天卫星等许多领域的首选7,8。9 – 15 然而,在制造和使用过程中引入的多层 PV 电池的机械应力和断裂对光电转换性能和寿命起着至关重要的作用。因此,定量表征和评估太阳能电池中的残余应力对优化结构设计、提高其可靠性具有重要意义。在光伏电池宏观断裂之前,大量的微裂纹开始形成、积累并对光伏电池产生弯曲效应,导致高振幅残余应力,从而导致光伏电池性能显著下降。更好地了解光伏电池的残余应力对于分析损伤机制以及随后通过改进结构设计来提高光伏电池的性能具有重要意义。16 – 18
太阳能驱动水分解的持久性能和高效率是光电化学 (PEC) 电池尚未同时实现的巨大挑战。虽然由 III-V 族半导体制成的光伏电池可以实现很高的光电转换效率,但它们与电催化剂的功能集成以及工作寿命仍然是巨大的挑战。在此,超薄 TiN 层被用作埋层结 n + p-GaInP 2 光电阴极上的扩散屏障,使得随后的 Ni 5 P 4 催化剂生长为纳米岛时能够升高温度,而不会损坏 GaInP 2 结。所得 PEC 半电池的吸收损失可以忽略不计,饱和光电流密度和 H 2 释放量与用 PtRu 催化剂装饰的基准光电阴极相当。高耐腐蚀 Ni 5 P 4 /TiN 层在 120 小时内显示出不减损的光电阴极运行时间,超过了之前的基准。通过蚀刻去除电沉积铜(引入的污染物),恢复了全部性能,证明了操作耐用性。 TiN 层扩大了合成条件并防止腐蚀,使 III-V PEC 设备稳定运行,而 Ni 5 P 4 催化剂则取代了昂贵且稀缺的贵金属催化剂。
资格标准标准在太阳能电池的高耐力和弹性上。在这些Stan dard中,例如欧洲ECSS-E-ST-20-08C或美国AIAA S-111A对应物,包括与高温加速测试有关的生命测试(包括其他许多)。There are several issues that make it difficult to assess the multijunction solar cell life from temperature tests in these standards.例如,在欧洲标准中,假定为硅设备确定的0.7 eV的活化能。另一方面,美国标准在50℃,80℃和110℃的温度下提出了温度加速测试,显然很低,可以真正加速太阳能电池的寿命测试。因此,在本文中,我们介绍了由Inno vative温度ALT得出的结果可靠性数字(可靠性函数,失效概率和MTTF),该温度允许适当估计商业晶格的激活能量匹配的Gainp/ga(IN)AS/GE Triple Juniple -Junife Junction太阳能电池。主要结论是:a)估计活化能为0.97 eV。此值导致测试细胞的寿命值明显更高。b)从Weibull失败密度函数β获得的形状参数为1.67; c)测试的太阳能电池在80°C - 130℃的温度范围内表现出强大的设备,表现出高可靠性值; d)对于较高的温度,尤其是150℃以上的温度,可靠性显着衰减; f)可以在任何操作温度和故障标准中评估可靠性函数和参数。