有一个广泛的说法,即甘斯很难训练,文献中的甘恩建筑充满了经验技巧。我们提供了反对这一主张的证据,并在更原则的管理中建立了现代的基线。首先,我们得出了一个行为良好的正规相对论gan损失,该损失解决了以前通过一袋临时技巧解决的模式掉落和非连面问题。我们通过数学分析我们的损失,并证明它可以承认本地融合保证,这与大多数现有的相对论损失不同。第二,我们的新损失使我们能够丢弃所有临时技巧,并替换与现代体系结构共同使用的过时的骨架。以stylegan2为例,我们提出了简化和现代化的路线图,从而导致新的MINI-MILIST基线-R3GAN。尽管很简单,但我们的方法超过了FFHQ,ImageNet,Cifar和堆叠的MNIST数据集的StyleGAN2,并与最先进的gan和扩散模型进行了比较。
Awards • Finalist, 2023 INFORMS DMDA Workshop Best Paper Competition – Theoretical Track • Winner, 2021 INFORMS Pierskalla Best Paper Award • Winner, 2021 CHOW Best Student Paper in the Category of Operations Research and Manage- ment Science • Finalist, 2019 INFORMS IBM Service Science Best Student Paper Award • Tata Consultancy Services Fellowship, 2020 • William Larimer Mellon PhD Fellowship, 2017-2019,2021,2022
关键字:Gan,Mishemt,MBE,MMIC,AL 2 O 3,可靠性摘要雷神已经在<111> si Hemt技术上采用了分子束外延(MBE)开发了gan的状态。相对于MOCVD(〜1000 o C)的分子束外延(MBE)的较低生长温度(〜750 o C)导致热性能提高和从IIII-V/SI界面减少微波损失。这些因素结合起来,以使最有效的高功率(> 4 w/mm)在高频(≥10GHz)上进行操作,这些操作通常与Si上的gan hemts无关。较低的温度MBE生长过程减少了生长后冷却后的GAN拉伸应变,这又使Aln成核层用于GAN HEMT生长。这与基于MOCVD的生长中使用的复杂的Algan/Aln菌株补偿层相反,这些层已显示出显着降低IIII-V外延层的总体导热率。此外,低温MBE ALN成核层导致Si/IIi-氮化物界面处的界面电荷降低。这种大大降低的电荷使雷神能够实现<0.2dB/mm的创纪录的低微波损失(对于SI上的GAN),最高为35 GHz,可与SIC上的GAN相当[1]。最重要的是,在100mm高电阻(> 1,000 ohm-cm)上实现MBE种植的Gan Hemt Epi层质量和均匀性时,记录了创纪录的低微波损失(> 1,000 OHM-CM)<111> Si,可与MOCVD在SIC上生长的GAN相当。板电阻低至423欧姆 /平方英尺(±0.8%),迁移率为〜1,600 cm 2 /v-s。这样做是为了使整个栅极电容,IDSS,IMAX和V t与为了减少门泄漏,雷神用ALD沉积了Al 2 O 3作为高k栅极介电介质形成不幸的。为了最大程度地减少门泄漏,而不会影响关键的RF设备特性(例如FT,FMAX,POWER和PAE),使用电荷平衡模型与栅极介电堆栈一起设计Schottky层厚度。
BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]
此简介的作者是Moya Connelly,William Wallock和PhillipeKäfer。作者要感谢以下专业人士的合作和珍贵的贡献,包括支持者毛里西奥·昆特拉(Traive)(traive),路易斯·巴比耶(Luis Barbieri),路易斯·拉波(Luis Lapo),路易斯·拉波(Luis Lapo)和莱南·克莱门特(Rhenan Clemente)(traive); and the working group members: Alex Bashian (Rockefeller Foundation), Daniela Feltes (Finance in Motion), Gabriel Thoumi (Responsible Alpha), Mike Kroll (Responsible Alpha), Roger Leung (Responsible Alpha), João Francisco Adrien Fernande (Itaú BBA), Nawar Al Ebadi (Sida), Marilia Martins (CrossBoundary Group), Girish Aivalli(影响投资者委员会),Felipe Leonato(Aon),Dale Petrie(开发担保小组),Lasitha Perera(开发担保小组)和Ina Hoxha(IFU)。作者要承认专家的贡献:Nawar al Ebadi(SIDA)。作者还要感谢Barbara Buchner,Ben Broche,Rachael Axelrod,Kathleen Maeder,Angela Woodall,Elana Fortin,Pauline Baudry,JúlioLubianco和Samuel Goodman的持续建议,支持,支持,评论,设计和内部评论。
BFOM = Baliga 功率晶体管性能品质因数 [K* µ *Ec 3 ] JFM = Johnson 功率晶体管性能品质因数(击穿,电子速度积)[Eb*Vbr/2 π ]
我们是电源领域的领军者,技术领先者,在 GaN 领域拥有 20 年的创新经验,提供完整系统解决方案所需的所有组件(控制器、驱动器、开关)