本研究中使用的石墨烯是一种基于三维碳(3D-C)的纳米结构泡沫状 TIM,具有相对较高的固有热导率(~80 W/mK)。[6] 中介绍了该材料的制备工艺和物理特性,以镍泡沫为模板来生长 GF,在环境压力下通过在 1,000 °C 下分解 CH4 将碳引入其中,然后在镍泡沫表面沉淀石墨烯薄膜。由于热膨胀系数的差异,石墨烯薄膜上形成了波纹和皱纹。在用热 HCl 溶液蚀刻掉镍结构之前,在石墨烯薄膜表面沉积一层薄薄的聚甲基丙烯酸甲酯 (PMMA),作为支撑,以防止石墨烯网络在此过程中坍塌。随后用热丙酮小心地去除PMMA层,即可得到连续、相互连接的石墨烯三维网络整体。
阈值电压不稳定很大程度上被归因于 p-GaN/AlGaN 堆栈中存在的两种竞争机制,即空穴和电子捕获,分别导致负和正的 V TH 偏移 [3-9]。其中一种机制的盛行程度可能取决于栅极偏压和温度 [3]、技术种类 [11] 以及应力 / 表征时间 [12]。总体而言,来自栅极金属的空穴注入和 / 或高场耗尽肖特基结中的碰撞电离已被确定为导致 V TH 不稳定的此类现象的根本原因。提出了一些工艺优化措施,例如降低栅极金属附近 p-GaN 层中的活性镁掺杂浓度 [11]、降低 AlGaN 势垒中的铝含量 [3] 以及优化 p-GaN 侧壁的蚀刻和钝化 [10],以限制正向栅极应力下的负和正 V TH 偏移。
M. L. Drechsler,M。Lorke,F。Jahnke理论物理研究所,不来梅大学,Otto-Hahn-Allee 1,28359 Bremen,德国,德国电子邮件:mon dre@uni-bremen.de l. S.-M. Choi,F。Nippert,A。Koulas-Simos,S。Reitzenstein固态物理研究所,柏林技术大学,Hardenbergstr。 36,10623柏林,Ger-许多电子邮件:luca.choi@physik.tu-berlin.de; felix@physik.tu-berlin.de; aris.koulas-simos@tu-berlin.de; stephan.reitzenstei berlin.de; M. R. Wagner Paul-Drude-Institut,用于节日个人电子电子产品,莱布尼兹研究所柏林E.V.,Hausvogteiplatz研究协会,Hausvogteiplatz 5-7,10117柏林,德国固体州立物理研究所,柏林技术大学,柏林,Hardenbergstr。 36,10623柏林,播放:wagner@pdi-berlin.de F. F. Tabataba-vakili物理学学院,慕尼黑量子量子中心和纳米科学中心和卢德维格 - 米克斯米尔人 - 马克西米利人 - 穆特尼亚人 - 穆特·穆特·穆纳奇(Ludwig-Maximilians-universitötmünchen) (MCQST),Schellingstraße4,80799慕尼黑,Germation:f.tabataba@lmu.de B. Alloing,P。BoucaudUniversit´e Cˆote d'Azur d'Azur,CNRS,CNRS,CNRS,CRHEA,CRHEA,RUE BERNARD GR'EGORY,RUE BERNARD GR'EGORY,0690555555555555555550505 SOPHIA-SOPHIA-SOPHIA-ASSHIAIPOLIS,FIMASTIPOLIS,FIMASSIPOLIS,FIMASS:: blandine.alloing@crhea.cnrs.fr; philippe.boucaud@crhea.cnrs.frM. L. Drechsler,M。Lorke,F。Jahnke理论物理研究所,不来梅大学,Otto-Hahn-Allee 1,28359 Bremen,德国,德国电子邮件:mon dre@uni-bremen.de l. S.-M. Choi,F。Nippert,A。Koulas-Simos,S。Reitzenstein固态物理研究所,柏林技术大学,Hardenbergstr。36,10623柏林,Ger-许多电子邮件:luca.choi@physik.tu-berlin.de; felix@physik.tu-berlin.de; aris.koulas-simos@tu-berlin.de; stephan.reitzenstei berlin.de; M. R. Wagner Paul-Drude-Institut,用于节日个人电子电子产品,莱布尼兹研究所柏林E.V.,Hausvogteiplatz研究协会,Hausvogteiplatz 5-7,10117柏林,德国固体州立物理研究所,柏林技术大学,柏林,Hardenbergstr。36,10623柏林,播放:wagner@pdi-berlin.de F. F. Tabataba-vakili物理学学院,慕尼黑量子量子中心和纳米科学中心和卢德维格 - 米克斯米尔人 - 马克西米利人 - 穆特尼亚人 - 穆特·穆特·穆纳奇(Ludwig-Maximilians-universitötmünchen) (MCQST),Schellingstraße4,80799慕尼黑,Germation:f.tabataba@lmu.de B. Alloing,P。BoucaudUniversit´e Cˆote d'Azur d'Azur,CNRS,CNRS,CNRS,CRHEA,CRHEA,RUE BERNARD GR'EGORY,RUE BERNARD GR'EGORY,0690555555555555555550505 SOPHIA-SOPHIA-SOPHIA-ASSHIAIPOLIS,FIMASTIPOLIS,FIMASSIPOLIS,FIMASS:: blandine.alloing@crhea.cnrs.fr; philippe.boucaud@crhea.cnrs.fr
在可靠性研究中,当使用阈值电压 (V th ) 作为指标时,阈值电压 (V th ) 的不稳定性会造成问题,因为它会完全模糊由于实际器件老化而导致的最终漂移。这种不稳定性是在电气特性测量期间观察到的,与晶体管的“偏置历史”有关,这会在结构的不同层中引入载流子捕获/去捕获。因此,需要新的方法来克服这种与捕获相关的不稳定性问题,以便准确监控器件老化。为了解决阈值电压测量的可重复性问题,我们研究了其在 GaN 晶体管上的不稳定性。研究了在实际 V th 测量之前应用的预处理步骤。所提出的预处理方法基于在栅极端子上应用专用的 V GS (t) 偏置,从而导致 V th 的稳定和可重复值。通过分析预处理的 V th 测量后的漏极泄漏测量,可以确定实现观察到的 V th 稳定性的机制。它展示了空穴注入结构的作用。提出预处理 V th 测量方法作为补充测量,以便在未来的可靠性研究中正确跟踪 pGaN HEMT 的老化。
摘要 - 如今,缩小 HEMT 器件的尺寸对于使其在毫米波频域中运行至关重要。在这项工作中,我们比较了三种具有不同 GaN 通道厚度的 AlN/GaN 结构的电参数。经过直流稳定程序后,96 个受测 HEMT 器件的 DIBL 和滞后率表现出较小的离散度,这反映了不可否认的技术掌握和成熟度。对不同几何形状的器件在高达 200°C 的温度下的灵敏度评估表明,栅极-漏极距离会影响 R 随温度的变化,而不是 I dss 随温度的变化。我们还表明,中等电场下的 DIBL 和漏极滞后表现出非热行为;与栅极滞后延迟不同,栅极滞后延迟可以被热激活,并且无论栅极长度的大小如何都表现出线性温度依赖性。
在 GaN HEMT 的可靠性研究中,阈值电压 (V th ) 的波动对监测电漂移提出了挑战。虽然欧姆 p-GaN 等技术可以减轻 V th 波动,但可恢复电荷捕获的问题仍然存在。因此,在进行可靠性研究时采用新颖的特性分析方法至关重要,这样才能测量内在变化而不是即使在未退化的晶体管中也存在的电荷捕获效应。本文阐述的一种方法可以可靠且可重复地测量欧姆 p-GaN 栅极 HEMT GaN 的 V th 。在阈值电压测量之前立即引入专用的栅极偏置曲线以使其稳定。这个预处理阶段需要负偏置电压,然后再施加适当高的电压才能有效。所介绍的新协议也被证明适用于其他 HEMT GaN 结构。
摘要 — 本文提出了一种基于宽带隙 RF 技术设计低噪声放大器的原创方法。这些 LNA 能够承受高电磁信号(如电子战中使用的信号),同时提供高探测率。该研究介绍了基于相同策略的单级 LNA 和两级 LNA 的原始设计程序。这些自重构 LNA 可以从高探测率模式(低 NF)切换到高线性模式(高输入压缩模式 IP 1dB )。该设计策略与稳健的 LNA 设计进行了比较,后者使用更大的晶体管尺寸来提高线性度,但代价是 NF 略有下降。在放大器输入端,RF 步进应力结果已达到 30 dBm,没有任何破坏,并提供稳定的 S 参数和噪声系数。
A. 具有 MBE 再生长 P-GaN 栅极的常关型 HEMT HEMT 结构的特点是具有 25 nm 厚的 AlGaN 势垒和 20 % 的铝率。首先,通过 PECVD(等离子增强气相沉积)沉积 100 nm 厚的氧化硅 SiO 2 层,作为 AlGaN 栅极蚀刻和选择性 GaN 再生长的掩模。在用 CF 4 RIE 蚀刻 SiO 2 层以确定栅极区域之后,通过 ICPECVD 对 AlGaN 层进行 Cl 2 部分蚀刻,条件如下:RF 功率为 60 W、压力为 5 mTorr 并且 Cl 2 流速为 10 sccm。蚀刻时间为 35 秒,去除了 19 nm 的 AlGaN。然后在 MBE(分子束外延)反应器中重新生长用镁(Mg)掺杂的 50 nm GaN 层,其标称受体浓度为 Na-Nd 为 4 x 10 18 cm -3。
Thi Huong Ngo、Rémi Comyn、Eric Frayssinet、Hyonju Chauveau、Sébastien Chenot 等人。具有位错簇的垂直 GaN-on-GaN 肖特基二极管的阴极发光和电学研究。《晶体生长杂志》,Elsevier,2020 年,552,第 125911 页。�10.1016/j.jcrysgro.2020.125911�。�hal- 03418915�
Mie University,MIE 514-8507,日本摘要 - 超宽带隙(UWBG)材料(例如ALN)是一类材料的一部分,这些材料的一部分比传统的宽带隙(WBG)材料(例如GAN),例如GAN,例如GAN,允许更高的工作电压。在这项工作中,我们介绍了Aln/Algan/Aln双重异质结构的制造和DC/高压表征,这些异质结构是由Aln/Sapphire上的Metal Organic Chemical Vapor沉积重生的。报道了低于2µm的间距的泄漏电流约1100V的缓冲区分解,这对应于大约6 mV/cm的分解场。此外,晶体管在此异质结构上已成功制造,泄漏电流低和抗性低。确实已经达到了4.5 kV的击穿电压,而现状泄漏电流确实已经达到0.1 µA/mm。这些结果表明,Algan-Channel Hemts对高功率,高温未来的应用有希望。