总体叙述 1. 执行摘要 佛蒙特州氮化镓 (V-GaN) 技术中心将创建一个创新生态系统,以加速为国防、先进通信和电动/混合动力汽车行业的高功率/高频消费者开发和采用先进半导体器件。这项技术的总目标市场规模很大,预计未来 8 年的复合年增长率为 15-25%。在 GlobalFoundries 位于佛蒙特州的 Trusted Foundry 对基于 GaN 的器件制造进行大量投资的基础上,新老半导体设计公司将与电子设计自动化提供商合作,以满足预期的市场增长。我们将与国家半导体行业合作伙伴一起实施一项全面的劳动力发展计划。在佛蒙特州和地方市政当局的支持下,我们将在未来 10 年内确立美国在高功率/高频半导体行业领域的全球领导地位。伯灵顿-南伯灵顿大都会统计区 (MSA) 是美国佛蒙特州一个充满活力和蓬勃发展的地区,EIG 将其确定为 EPSCoR/农村合格区域中技术中心“准备就绪”的最佳位置。伯灵顿 MSA 是枢纽合作伙伴 GlobalFoundries(埃塞克斯枢纽)、佛蒙特大学(伯灵顿)以及创新合作伙伴 OnLogic 和 Resonant Link(南伯灵顿)的所在地。按价值计算,技术和制造业是佛蒙特州农业经济规模的 6 倍。佛蒙特州的技术增长将建立在强大的教育和生活质量基础设施之上,从而吸引下一代工人来到该地区。
•功率供应单元(PSU)。开放计算项目的变化正在增加48V输出的普及;但是,与以前的溶液相比,所需的80V和100V硅溶液的损失(门驱动和重叠损失)明显更高。GAN溶液(例如LMG3100)可以帮助最大程度地减少电感 - 电感 - 伴随阶段(LLC阶段)的同步整流器中的这些损失。•中间总线转换器(IBCS)。此系统将中间电压(48V)从PSU的输出转换为较低的电压,然后将其转换为服务器。随着48V电压级别流行,IBC有助于减少服务器子系统分布期间的I 2 r损失,并启用总尺寸和成本降低总线杆和携带电源的电线。IBCS的缺点是,它们为电源转换增加了另一个步骤,这可能会降低效率。因此,除了OEM正在测试高效率和功率密度的最佳组合外,还要利用高效gan设备(例如LMG2100和LMG3100)等高效GAN设备。•电池备用单元。降压阶段通常将电池电压(48V)转换为总线电压(48V)。当电源线路熄灭并且功率流是双向时,您也可以使用BBU进行电池电源转换。不间断的电源使用此阶段,因为它可以通过直接从电池直接执行DC到DC转换来避免由DC到AC-AC-TO-DC转换造成的损失。
摘要。通过将合金组成(x)从0更改为0到1,可以将Al X GA 1 -X N合金的能量带隙从〜3.4到6.1 eV进行系统调整,并且直接带隙性质在整个合金组合范围内保持在整个合金范围内,这些合金范围使Algan合金合适的材料可将光的光发射二号(LED)覆盖21 uptiover(uld)覆盖21 uptiols(U 21)。对于深紫外区(λ<300 nm)中的LED,需要高于50%的Al含量的Al含Algan合金。深紫外线LED在广泛的领域具有应用,包括显示,消毒,医疗,感应和通信。随着材料生长和电导率的最新进展,富含Al的Algan合金已成为独特的宽带间隙材料,用于开发深紫外线LED。在这篇评论文章中,富含艾尔根合金的进展如何在材料的增长和电导率方面取得了审查,导致其出现作为深色紫外线材料的出现。还将讨论深紫外线LED的挑战和前景,以提高设备的性能。
加州桑尼维尔,2024 年 1 月 8 日,宽带隙功率半导体材料、组件和代工服务领域的新兴领导者三安半导体宣布 Luminus Devices 为其在美洲的独家销售渠道。这是一个自然而然的选择,因为两家公司都是三安光电的子公司,三安光电是化合物半导体创新者和全球最大的 LED 芯片制造商。这种合作的时机非常理想,因为近年来,各种电力相关行业的客户都因交货时间过长而受到影响,尤其是碳化硅 (SiC) 晶圆、肖特基二极管和 MOSFET。三安最近在中国长沙完成了价值 20 亿美元的“超级工厂”的建设,现在有能力为客户提供交货时间短的产品和代工服务,大多数产品的交货时间最短为 8 周。这座超级工厂的产能也使三安成为中国最大的垂直整合 SiC 制造商,也是全球第三大制造商。三安计划专注于代工服务,为需要 SiC 基板、外延片或裸片安全供应的成熟半导体公司提供支持。同时,三安提供 SiC 肖特基二极管和 SiC MOSFET 的交钥匙解决方案,为可再生能源和各种应用领域的新兴客户提供支持,例如工业电源、风力发电、储能、电机驱动、数据中心、暖通空调、电动汽车 (EV) 充电、光伏和其他高功率场景,在这些场景中,SiC 的优势可提供必要的稳健性、价值和效率。
■«X-Technologies» /“ Moon-Shot”技术■«X-Concepts»完全利用基本规模定律和X技术■Power Electronics 1.0电力电子4.0■2…5…5…5…10倍提高10%!
宽带隙半导体 SiC 和 GaN 已商业化用于电力电子和可见光至紫外发光二极管(例如 GaN/InGaN/AlGaN 材料系统)。对于电力电子应用,SiC MOSFET(金属 - 氧化物 - 半导体场效应晶体管)和整流器以及 GaN/AlGaN HEMT 和垂直整流器在高功率水平下提供比 Si 器件更高效的切换,现在正用于电动汽车及其充电基础设施。这些器件还可应用于涉及高温和极端环境的电动飞机和太空任务。在本综述中,将它们的固有辐射硬度(定义为对总剂量的耐受性)与 Si 器件进行了比较。宽带隙半导体的固有辐射硬度更高,部分原因是它们产生缺陷的阈值能量(原子键强度)更大,更重要的是因为它们的缺陷复合率高。然而,现在人们越来越认识到,SiC 和 GaN 功率器件中重离子引起的灾难性单粒子烧毁通常发生在电压约为额定值的 50% 时。在高线性能量传输速率和高施加偏压下,离子诱导泄漏发生在外延区域内的临界功率耗散之上。沿离子轨道耗散的功率量决定了漏电流衰减的程度。最终结果是沿离子轨道产生的载流子发生碰撞电离和热失控。发光器件不受这种机制的影响,因为它们是正向偏置的。应变最近也被确定为影响宽带隙器件辐射敏感性的一个参数。
1)TopGaN Ltd.,ul。波兰华沙,Sokolowska 29/37,01-142。 2) 巴基斯坦科学院高压物理研究所,ul。波兰华沙,Sokolowska 29/37,01-142。 3) 格拉斯哥大学工程学院,格拉斯哥 G12 8LT,英国 4) 国家物理实验室,泰丁顿,米德尔塞克斯,TW11 OLW,英国,
我们是电源领域的领军者,技术领先者,在 GaN 领域拥有 20 年的创新经验,提供完整系统解决方案所需的所有组件(控制器、驱动器、开关)