云数据中心能力的持续指数增长在执行大量计算密集的工作量时,对碳排放的认识提高了。为了减少car-bon排放,云用户通常会暂时将其批处理工作负载转移到碳强度低的时期。尽管这种时间的变化可以增加工作完成时间,但由于其延迟执行,云购买量的成本节省(例如保留实例)也会减少用户以碳吸引力的方式运作时。发生这种情况是因为碳感知调整通过定期离开资源来改变需求模式,这在碳排放和成本之间创造了权衡。在本文中,我们提出了盖亚(Gaia),这是一种碳感知的调度程序,使用户能够解决基于云的批处理调度程序中的碳,性能和成本之间的三向权衡。我们的结果量化了云平台中碳绩效成本的权衡,并表明,与现有的碳感知调度策略相比,我们提出的政策可以使每百分比增加成本的碳储蓄量增加一倍,同时将绩效降低间隔额的碳储蓄量增加了26%。
Accountant Angela Andrade Dantas Mendonça Accountant Antonio Carlos Sales Ferreira Junior Domingos Sávio Alves da Cunha Accountant Edneu da Silva Calderari Accountant Elias Dib Caddah Neto Contador Erivan Borges Accountant Fabiano Ribeiro Pimentel Trajano Farias Contador Helcimar Araujo Belém Filho Accountant Jose Luiz Marques Barreto Accountant José Gonçalves Campos Filho Accountant Liliana Farias Lacerda Accountant Lucilene Florêncio Viana Accountant Marcelo Augusto Jorge Accounting Maria Leny Adânia of Sylos Accountant Marlise Alves Silva Teixeira Accounting Technician Maurício Gilberto Candido Contadora Foerster Norton Thomazi会计PalmiraLeãoDeSouza会计师Sonia Maria ValmirLeôncioDa Silva会计师Weberth Fernandes> RBC编辑委员会协调员Accountant Angela Andrade Dantas Mendonça Accountant Antonio Carlos Sales Ferreira Junior Domingos Sávio Alves da Cunha Accountant Edneu da Silva Calderari Accountant Elias Dib Caddah Neto Contador Erivan Borges Accountant Fabiano Ribeiro Pimentel Trajano Farias Contador Helcimar Araujo Belém Filho Accountant Jose Luiz Marques Barreto Accountant José Gonçalves Campos Filho Accountant Liliana Farias Lacerda Accountant Lucilene Florêncio Viana Accountant Marcelo Augusto Jorge Accounting Maria Leny Adânia of Sylos Accountant Marlise Alves Silva Teixeira Accounting Technician Maurício Gilberto Candido Contadora Foerster Norton Thomazi会计PalmiraLeãoDeSouza会计师Sonia Maria ValmirLeôncioDa Silva会计师Weberth Fernandes> RBC编辑委员会协调员
上下文。大多数巨星位于二进制或多个恒星系统中。与单颗恒星相比,这些物体基于模型大气对定量分析提出了其他挑战。特别是目前几乎没有有关此类系统化学组成的信息。目标。四个恒星系统HD 37061的成员充满了猎户座中H II区域43的兴奋。首次得出所有可在光谱中可追踪的线的元素的精确和精确的丰度。方法。采用了与A tLAS 12代码与非LTE线形成计算相结合的杂种非本地热力学平衡(非LTE)方法。分析了单个恒星的大气参数和元素丰度的高分辨率复合谱。基本的恒星参数是基于恒星进化轨迹得出的,并表征了星际红色。结果。我们确定了HD 37061系统中三个恒星的基本参数和化学丰度。系统中的第四个和最微弱的恒星由于其快速旋转而没有显示出不同的光谱特征。但是,该恒星对连续体具有明显的影响。单个恒星的派生元素丰度和确定的年龄相互一致,并且丰度与宇宙丰度标准相一致。我们发现光谱距离与Gaia数据释放3个视差距离之间有着极好的一致性。
电影和科学周期的第八版将集中在一个对科学界感兴趣的概念上:时间。 div>史蒂芬·W·霍金(Stephen W. div>Hawmoves写下了Best Sellera的标题,《短暂的时间历史》:这是大爆炸中的黑洞。 div>H. G. Wells第一本小说的第一本小说插入了科学旅行问题,而又不会忘记巨大的政治深度。 div>乔治·佩尔(George Pale)适应了电影,《时代机器》 - 时代的机器 - (1960)。 div>无处不在的地方,他赢得了七个Os -Carwon奖项 - (Daniel Kwan和Daniel Kwan和Daniel Scheinert,2022年)。 div>底座是底座底座之间的断裂,它将使我们反思多重理论,甚至可以返回霍金和黑洞。 div>特别是在高生活中的黑洞(Claire Denis,2018年)的任务中,他得到了物理学家Jean-Pol Fargeau和专家写作电影剧本的支持。 div>他们还收集了性和生殖实验。 div>
医院治疗系以院士P.E.命名Lukomsky,Pirogov俄罗斯国家研究医科大学,医院治疗系,在内分泌学,血液学和临床实验室诊断课程中,俄罗斯人友谊大学以俄罗斯帕特里斯·卢姆巴(Patrice Lumumba),俄罗斯帕特里斯·卢姆巴(Patrice Lumumba)的名字命名意大利d内科医学科医学,里加·斯特拉丁斯大学,拉特维亚心脏病学中心,P。stradinsP. Stradins临床大学医院,拉特维亚ERAIGA,拉脱维亚E部,俄罗斯Pirogov俄罗斯国家研究医学院,俄罗斯Pirogov俄罗斯国家研究医科 Sevilla (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), CIBERESP and Department of Medicine, Universidad de Sevilla, Seville, Spain h Internal Medicine Department, Znojmo Hospital, Znojmo i Faculty of Medicine, Masaryk University, Brno, Czech Republic j Internal Medicine Unit “ Principe di Piemonte ” Hospital Senigallia (AN), Italy K内科部门,Centro Hospital de Vila Nova de Gaia/Espinho,心血管研发Centre-Unic@Rise,faculdade de Medicina de Medicina da Universidade do Porto,葡萄牙L波兰人基于循证医学研究所,Krakow,Krakow,Poland
马丁·蒂格格雷伯(Martin Tieggraber)7:8,亨德里克10,安德里亚·帕兹米尼9,阿尔基维亚迪斯·贝斯10,阿里亚尼·巴西罗(Ariane Basureau),阿里亚尼·巴西罗(Ariane Basureau)9,K。FolkertBoersma 15,Manuel Gebetsberger 7.8,Florence Guadil 9,Florence Guadil 9,Micheel Grutter of Mare Gruzdander Gruzdev 15 Karagaziozios 10,Rigel Kivi 22,Square 23,Pieterel F. Live 2.24,Portafaix 27,Roma 26,Olga Puentedura 26,Richard Querel 28,Richard Querel 28,Julia Remmers 14,Andreas Richter 30,12
摘要我们对四个完全对流的“双”宽二进制的旋转和出色活性进行了研究。每对中的组件具有(1)星形统计结果,它们是普通型 - 运动二进制文件,(2)Gaia BP,RP和2Mass J,H和K S幅度在0.10 mag之内匹配,并且(3)大概是相同的年龄和成分。我们报告了所有组件的长期光度法,旋转周期,多型Hα等效宽度,X射线照明,时间序列径向速度和斑点观测值。虽然可能会希望双胞胎组件具有匹配的磁性属性,但事实并非如此。GJ 1183 AB的长期光度法表明,A比B上的斑点活性持续更高,这一趋势与L X中的58%±9%强58%±9%相匹配,HHα平均强26%±9% - 尽管A = 0.86天的旋转周期和B = 0.68天,但该范围与旋转范围相似,并在此旋转范围,并且旋转了范围。年轻的βPIC移动组成员2MA 0201 + 0117 AB显示出一个始终如一的活性B成分,在L X中强3.6±0.5倍,平均Hα强52%±19%,在A = 6.01天旋转,在A = 6.01天,B = 3.30天。最后,NLTT 44989 AB显示出显着的差异,对Spindown Evolution的影响 - B持续Hα发射,而A显示吸收,B在L X中强39±4倍,大概是由于令人惊讶的不同旋转周期= 38天= 38天,B = 6.55天。最后一个系统KX COM具有未解决的径向速度伴侣,因此不是双胞胎系统。
Gaia合作:P。Panuzzo 1,T。Mazeh 2,F。Arenou 1,B。All3,4,E Bercroke 11,N。Mowlavi3,G。M。M. M. M. M. M. M. M. M. M. M. M. M. M. A.Brown 14,A。Vallari15,T。Prussia16,J.J.J.22,C。Jordi23,24,S.,P。Tanga18,N。A。Walton 20,C 19,18,F。VanLeeuwen 20,R。Andrae32,R。Andrae32,M。Audard3,M。Audard3,M。Fouesneau32,J.Fouesneau 32,J.Fouesneau 32,Y. 17,Y.Sordo 15,R.Sordo 15,R. Carrasco 24.23.27,B。Delisle 3,C。Enecouchy 103,E。Denis 18,104,T。E. E. E. H. E. H. Enke 64,C。Fabre 85,M。Mass 57.58,S。Faigler 2,Foron 76,F.Fragkoudi 108,M。Gai 33,M。Gai 33,G。G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. G. Giormore 20,giron 111 111 111 111 111,GOMB 57,A. ,I 24,23,27,R。Sánchez12,M。Haywood1,A。Helmer75 1116,T。Hilger25,D。Hobbs26,C。J。J. Juaristi Campillo 8,Z. Kaczmarek 8 8,Z.Cost-Rutkowska 68:14,K。Crusades 117,M.Kun 65,M.Kun 65,M.Kun 65,M.Kun 65,
记忆CD8 + T细胞的多样性和B细胞反应与MRNA疫苗接种后的SARS-COV-2相关,Nadia brasu 1,2,12,Ines Elia 1,3,12,Valentina Russo 1,2,12,Gaia Montacchiesi 1,2,12,Simona Aversano aversano稳定性1,12 ,3,Marco Macagno 3,Monica Montone 3,Benedetta Mussolin 3,Alba Grifoni 4,Silvia Faravelli 5,Silvia Marchese 6,Federico Forneris 5,Raffaele de Francesco 6,7,Alessandro Sette,Alessandro Sette 4,8 ,13。 1 意大利多伦多坎迪奥洛 IIGM G. Armenise-Harvard 免疫调节部门。 2 意大利都灵大学肿瘤学系。 3 意大利托斯卡纳地区坎迪奥洛癌症研究所,FPO-IRCCS,坎迪奥洛。 4 美国加利福尼亚州拉霍亚免疫学研究所传染病和疫苗研究中心。 5 意大利帕维亚大学结构生物学系 Armenise-Harvard 实验室,生物和生物技术系,帕维亚,意大利。 6 意大利米兰“罗密欧与恩里卡因弗尼齐”国家分子遗传学研究所。 7 意大利米兰大学药理学和生物分子科学系。 8 美国加利福尼亚州拉霍亚加州大学圣地亚哥分校医学系、传染病与全球公共卫生学部。 9 意大利巴斯德研究所——Cenci Bolognetti 基金会,意大利罗马。 10 意大利罗马第一大学临床、实习、麻醉学和心血管科学系。 11 意大利都灵大学医学科学系。 12 以下作者贡献相同:Nadia Brasu、Ines Elia、Valentina Russo。 13 以下作者共同指导了这项工作:Anna Sapino、Luigia Pace。电子邮件:luigia.pace@iigm.it
航空航天已经开发了高保真的太空领域意识(SDA)场景模拟器,为基于地面和空间的电光传感器提供现实的太空监视场景,以在从概念开发到操作到操作以及评估任务数据处理Algorithm和其他数据Pipeelines的所有阶段中的利益相关者为利益相关者提供模拟图像。我们使用传感器 - 目标参与方案构建场景,该场景在添加适当的背景,恒星,目标和噪声组件的同时对场景的频段辐射指定进行建模。场景模拟器使用恒星目录,包括超过十亿星的Gaia目录,将它们准确地放入图像中,并准确地表示其颜色校正的带有带有的亮度降低至22级。模拟器使用其他已发表的数据来对银河系平面中的黄道光和未解决的恒星的自然天空亮度进行建模。此外,由于未拒绝的杂散光而产生的较高背景是基于实验室和轨道测量结果注入诸如宇宙射线之类的时间背景效应。模拟器可选地包含了电流传感器偏置结构和噪声源的实验室测量,例如深电流,读取噪声和其他时空传感器噪声的来源。由模拟器创建的高保真场景目前用于降低风险,指导技术开发并为多个程序提供操作范围,以确保传感器硬件性能和数据处理软件将满足任务需求和要求。航空航天可以通过任何传感器观察操作概念(CONOPS)模拟场景,场景中的目标可以以任何忠诚度建模,从简单的漫不好物球体到高保真计算机辅助设计(CAD)模型,呈现出具有现实的双向反射率分配功能(Brundfs)和摄取复杂的效果。