Apratim Halder,Gracy Kumari,Trishita Maity工程与管理研究所,加尔各答,西孟加拉邦,印度西孟加拉邦,摘要The Hubble太空望远镜(HST)是一种非凡的工具,自1990年在其推出以来,我们对宇宙的理解进行了革命。从那以后,它提供了前所未有的乐观情绪,并希望达到更大的东西。这是针对世界各地的天文学家,物理学家和科学爱好者改变游戏规则的发明,使他们能够发现以前被认为无法实现的奇迹。HST的遗产超出了其科学贡献。其迷人的图像和公共可及性激发了全世界数百万的启发,引起了公众对天文学和太空探索的兴趣。本研究论文旨在研究跨天体物理学和宇宙学领域中哈勃望远镜的科学影响。通过我们的研究,我们旨在突出哈勃望远镜促进的一些关键科学突破,包括测量哈勃常数,星系和暗物质的研究,外部球队的研究以及对早期宇宙的探索。Keywords: Astrophysics, Hubble Space Telescope (HST), Cosmology, Galactic studies, Exoplanets, Spectroscopy, James Webb Space Telescope (JWST), Nancy Grace Roman Space Telescope (RST), Wide- Field Infrared Survey Telescope (WFIRST), Corrective optics, Spherical aberration, Stellar astronomy, Transit method, Dark matter,重力镜头,紫外线和红外观测。
如今,蓝色起源和维珍银河等公司已成功将付费客户送入太空,开创了太空旅游业的未来。虽然不断发展的太空旅游业促进了科学进步,并将曾经只有受过训练的宇航员才能进行的活动向公众开放,但该行业也产生了新的问题,并揭示了国际空间法的脆弱性。本文探讨了商业航天的历史以及构成现行法律制度的国际协议。它认为,太空旅游需要一项新的国际协议来解决现行国际制度中的三个脆弱性:环境保护、对太空游客的保护以及对商业航天公司的监管。本文借鉴了《南极条约体系》、《亚马逊合作条约》和《联合国海洋法公约》的例子,以说明这项新的国际协议如何成功地平衡促进商业航天的发展与确保环境和乘客得到充分保护。
幸运的是,麦克斯韦方程从亚原子长度尺度到银河系长度尺度都是精确的。在真空中,它们已被证实具有极高的精度(见第 1.1 节)。此外,自 20 世纪 60 年代以来的几十年里,麦克斯韦方程已经能够得到许多复杂结构的数值解。这种用数值方法求解麦克斯韦方程的领域被称为计算电磁学,本课程后面将对此进行讨论。现在有许多商业软件可以高精度地求解麦克斯韦方程。因此,如今的设计工程师不需要更高的数学和物理知识,只要学习如何使用这些商业软件就可以获得麦克斯韦方程的解。这对许多设计工程师来说是一个福音:通过运行这些软件并进行试错,就可以设计出精彩的系统。在实际制造硬件之前使用模拟进行电磁设计的艺术被称为虚拟原型。
缩写 定义 3D 三维 ABS 丙烯腈-丁二烯-苯乙烯 AC 交流电 ALARA 尽可能低的合理值 AMF 增材制造设施 ARS 急性辐射综合症 BER 碱基切除修复 CME 日冕物质抛射 CNT 碳纳米管 CRS 慢性辐射综合症 DAP 剂量面积乘积 DAPI 4',6-二氨基-2-苯基吲哚 DC 直流电 DEP 介电泳 DMEM 杜氏改良鹰培养基 DNA 脱氧核糖核酸 DSB 双链断裂 EDTA 胰蛋白酶-乙二胺四乙酸 EMU 舱外机动装置 ESA 欧洲航天局 ESD 静电放电 EVA 舱外活动 GCR 银河宇宙辐射 Gy 格雷 HDBPE 高密度硼化聚乙烯 HDPE 高密度聚乙烯 HZE 高电荷 Z 和高能 ICRP 国际委员会放射防护 ICRU 国际辐射单位与测量委员会
抽象的外星长期栖息地系统(此后称为栖息地系统)需要开创性的技术进步,以克服隔离和具有挑战性的环境引入的极端需求。栖息地系统必须按照连续的破坏性条件下的意图运行。设计需要具有挑战性的环境将在栖息地系统上(例如,野生温度波动,银河宇宙射线,破坏性灰尘,震荡,振动和太阳粒子事件)上放置的要求代表了这项努力中最大的挑战之一。这个工程问题需要我们设计和管理栖息地系统具有弹性。系统的弹性需要一种全面的方法,该方法通过设计过程来解释中断,并适应它们的运行方式。随着栖息地系统的发展 - 随着物理规模,复杂性,人口和连通性的成长以及操作的多样化,它必须继续保持安全和弹性。在这项努力中,我们应该利用在开发响应灾难性自然危害,自动机器人机器人平台,智能建筑,网络物理测试,复杂的系统以及诊断系统以及智能健康管理预后的反应的民事基础设施中学到的经验教训。这项研究强调了系统弹性和网络物理测试在应对开发栖息地系统的巨大挑战方面的重要性。简介将人类送往月球的追求(这是停留的时候),火星已经参与了世界太空社区。这场现代太空竞赛最终将导致长期解决。2015年,美国宇航局发布了其在火星上建立长期定居点的计划:“我们为人们的工作,学习,运作和可持续地居住在地球以外的地球长期以外的时间都为人们寻求能力。” NASA(2015)。人类面临着新的挑战。,我们准备好在地球以外建立永久性的人类定居点了吗?外星栖息地系统需要开创性的技术进步,以克服隔离和极端环境引入的前所未有的需求。长期栖息地系统(此后称为栖息地系统)必须在连续的破坏性条件和有限的资源下按预期运行。设计极端环境将放置在栖息地系统上的要求,例如野生温度波动,银河宇宙射线,破坏性灰尘,灭气体撞击(直接或间接),振动和太阳粒子事件,呈现
辐射效应对 SiC 和 GaN 电力电子器件的可靠性有着至关重要的影响,必须了解辐射效应对于涉及暴露于各种电离和非电离辐射的太空和航空电子应用的影响。虽然这些半导体表现出对总电离剂量和位移损伤效应的出色辐射硬度,但 SiC 和 GaN 功率器件容易受到单粒子效应 (SEE) 的影响,这种效应是由无法屏蔽的高能重离子空间辐射环境 (银河宇宙射线) 引起的。这种性能下降发生在额定工作电压的 50% 以下,需要在降额电压下操作 SiC MOSFET 和整流器。业界还将陆地宇宙辐射 (中子) 引起的 SEE 确定为在飞机上使用 SiC 基电子产品的限制因素。在本文中,我们回顾了对这些材料进行全面系统评估的前景和机会,以了解这些影响的起源和可能的缓解措施。© 2021 电化学学会 (“ ECS ”)。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ ac12b8]
抽象空间辐射是规划长期人类太空任务的主要关注点之一。有两种主要类型的危险辐射:太阳能颗粒(SEP)和银河宇宙射线(GCR)。两者的强度和演变都取决于太阳活性。GCR活性最大。GCR的降低仅在太阳能活动后仅6-12个月才能在太阳活动之后。SEP概率和强度在太阳能最大值期间最大化,并在太阳最小值期间最小化。在这项研究中,我们将由于SEP和GCR引起的粒子环境的模型与蒙特卡洛在航天器和幻影内的辐射传播模拟。我们包括从氢到镍的28个完全离子化的GCR元素,并考虑质子和9个离子物种来对SEP辐照进行建模。我们的计算表明,飞往火星的最佳时间将以太阳能最大值启动任务,并且飞行持续时间不应超过大约4年。
空间探索的新时代的特点是一系列巨大的里程碑,这些里程碑扩大了人类成就的界限。SpaceX,Blue Origin和Virgin Galactic等私人公司在重新定义太空旅行的可能性方面发挥了关键作用。这些实体已经开创了可重复使用的火箭技术,大大降低了将有效载荷和人类推向太空的成本。SpaceX的Falcon 9火箭可以发射和登陆多次,从而使空间更具成本效益和可持续性。此外,国际空间站(ISS)证明了国际合作,代表了在低地球上建立可居住的哨所的全球努力。国际空间站不仅是科学研究的平台,而且还可以作为未来深空任务的垫脚石,从而促进了使地球生命受益的技术进步。火星已成为这个新时代的焦点。各种太空机构和私人公司正在努力工作,将船员的错误派往红色星球。NASA的毅力漫游者成功地降落在火星上,不仅在进行科学探索,而且还在测试未来人类任务的技术,例如从火星大气中产生氧气。埃隆·马斯克(Elon Musk)的SpaceX制定了一个大胆的计划,在火星上建立一个自我维持的殖民地,设想了人类成为多层次物种的未来。空间探索的新时代不仅限于我们的太阳系;它延伸到宇宙的最远。Starship是目前正在开发的完全可重复使用的航天器,旨在将大量乘客和货物运送到地球以外的目的地,彻底改变了行星际旅行。望远镜这样的望远镜望远镜为我们提供了遥远星系和星云的令人叹为观止的图像,扩大了我们的理解
照片来源和致谢。除非另有说明,否则使用的照片均为 © J. Scott Hamilton。全文中显示的照片由以下组织或个人提供并拥有版权,并已获得许可使用:第 16 页,华盛顿大都会机场管理局;第 20 页,NASA;第 21 页,Hyku Photo;第 22 页,Eclipse Aerospace, Inc.;第 26 页,美国海关和边境保护局;第 179 页,(顶部)国会图书馆,G.G.Bain 收藏;第 180 页,(底部)德克斯特和绍斯菲尔德学校的克莱天文台,为维珍银河;第 187 页,美国海军;第 189 页,Bernie Roland;第 214 页,美国陆军;第 293 页,美国地质调查局圣莫尼卡机场数字正射影像(通过 TopoQuest);第 301 页,丹佛国际机场;第 318 页,美国空军;第 354 页,运输安全管理局;第 406 页,istockphoto/Vipre77;第 414 页,NASA-加加林宇航员训练中心(国际空间站联盟号 13 号任务训练课程,俄罗斯星城);第 417 页,Bigelow Aerospace, LLC;第 434 页,NASA 插图;第 453 页,shutterstock.com/@Suwin;第 457 页,shutterstock.com/@Kletr;封面:bigstockphoto.com ©denbelitsky
詹姆斯·韦伯太空望远镜是太空中最强大的望远镜,它似乎比当前理论预期的更早探测到了星系结构的形成。该项目的目的是使用一种精髓型理论来解释早于预期的结构形成,该理论假设宇宙膨胀和暗能量具有相同的起源。这是使用弗里德曼方程完成的,将能量密度项替换为体积时间相关的初始能量项,该初始能量项旨在表示暗能量。这一变化基于这样的假设:暗能量正以光速被另一个相反的宇宙输送到这个宇宙中。新的暗能量理论包括膨胀状态和宇宙学常数状态,如宇宙学标准模型中所述,但与现有哈勃参数的时间依赖性并不完全匹配。这一新理论为早期星系形成的变化提供了一种解释,但尚未成功;然而,调整理论可以更好地适应詹姆斯·韦伯望远镜的观测结果。更好地理解宇宙及其形成将进一步加深科学家对宇宙当前内容及其必然终结的理解。