1实验和临床生物医学科学系“ Mario Serio”,佛罗伦萨大学生物化学部分,意大利佛罗伦萨50134; 2 de Biotecnologia I d de Biomedicina(IBB)和DeBioquímicaI Biogia Molecular,Universitatautònomade Barcelona,08193,西班牙巴塞罗那贝尔特拉(Bellaterra); 3比利时3000卢文的大脑和疾病研究中心开关实验室; 4比利时3000卢文的卢文库文,卢文的蜂窝和分子医学系Switch Laboratory; 5比利时3000卢文的AI和计算生物学中心开关实验室; 6物理与天文学系“ G. Galilei”,帕多瓦大学,意大利帕德沃35131; 7帕多瓦大学帕多瓦大学国家核物理研究所(INFN),意大利帕多瓦35131; 8英国CB21EW剑桥大学,Yusuf Hamied化学系错误折叠疾病中心,英国
4。简要介绍了特刊作为《光之后的后续:2024年中期意大利光子学论坛》,这是5月17日至18日在意大利罗马举行的轻型品牌会议之一,我们很高兴地宣布这一专门刊物,致力于意大利的Optics和Photonics。意大利的光学和光子学代表了一个动态和快速前进的领域,其特征是对科学研究和工业应用有重要贡献。意大利拥有丰富的历史和扎实的光学根源,其历史可以追溯到文艺复兴时期,例如Galileo Galilei,Giovanni Battista della Porta和F.M.Grimaldi,是古老的光学及其应用的先驱。今天,该国是领先的研究机构和大学的所在地,例如物理科学和物质技术系(DSFTM)(dsftm),纳粹·纳齐奥莱·德尔·里塞尔(Consiglio Nazionale delle Ricerche),这些公司推动了光子学和光学技术的创新。意大利公司处于在激光技术,光纤和成像系统等领域开发尖端解决方案的最前沿,在全球市场中起着至关重要的作用。在政府倡议和
4。简要介绍了特刊作为《光之后的后续:2024年中期意大利光子学论坛》,这是5月17日至18日在意大利罗马举行的轻型品牌会议之一,我们很高兴地宣布这一专门刊物,致力于意大利的Optics和Photonics。意大利的光学和光子学代表了一个动态和快速前进的领域,其特征是对科学研究和工业应用有重要贡献。意大利拥有丰富的历史和扎实的光学根源,其历史可以追溯到文艺复兴时期,例如Galileo Galilei,Giovanni Battista della Porta和F.M.Grimaldi,是古老的光学及其应用的先驱。今天,该国是领先的研究机构和大学的所在地,例如物理科学和物质技术系(DSFTM)(dsftm),纳粹·纳齐奥莱·德尔·里塞尔(Consiglio Nazionale delle Ricerche),这些公司推动了光子学和光学技术的创新。意大利公司处于在激光技术,光纤和成像系统等领域开发尖端解决方案的最前沿,在全球市场中起着至关重要的作用。在政府倡议和
1 伊苏布里亚大学科学与高科技系,via Valleggio 11, 22100 Como, 意大利 2 洛桑联邦理工学院(EPFL)物理研究所,1015 Lausanne, 瑞士 3 欧洲核子研究中心,1211 Meyrin, 瑞士 4 国家研究委员会光子学与纳米技术研究所,via Valleggio 11, 22100 Como, 意大利 5 物理与天文学系“G.意大利帕多瓦大学“伽利略”学院,35131 帕多瓦,意大利 6 帕多瓦国家核物理研究所,35131 帕多瓦,意大利 7 帕多瓦大学帕多瓦量子技术研究中心,35131 帕多瓦,意大利 8 帕维亚大学物理系,via Bassi 6,27100 帕维亚,意大利 9 米兰国家核物理研究所,via Celoria 16,20133 米兰,意大利 10 NEST,纳米科学研究所-CNR,56126 比萨,意大利
遥感时代被认为始于 1858 年,当时气球驾驶员 G. Tournachon(别名 Nadar)从他的气球上拍摄了巴黎的照片。后来,信鸽、风筝、飞机、火箭和无人气球也被用于早期成像。然而,遥感的历史可以与光学和航空学的发展和理解联系起来。亚里士多德(公元前 300 年)被认为是第一个进行光学实验的人。伽利略·伽利莱(1609 年)和艾萨克·牛顿爵士(1666 年)科学地解释了光学和光谱学。系统的航空摄影始于第一次世界大战期间,用于军事监视和侦察目的。在第一次世界大战期间,飞机被大规模用于这些目的,因为飞机被证明是比气球更可靠、更稳定的地球观测平台。然而,航空摄影和照片解译的重要发展发生在第二次世界大战期间。在此期间,近红外摄影、热传感和雷达等其他成像系统也得到了发展。
1 ICREA-COMPERX SYSTEMS LAB,UNIXIATAT POMPEU FABRA,AIGUADER 88博士,巴塞罗那08003,西班牙2,2 de Biologia evolutiva Institut de Biologia evolutiva,CSIC-UPF,PG Maritim de la la barceloneta 37,巴塞罗那37 30123,意大利4号4圣达菲研究所,位于1399 Hyde Park Road,NM 87501,美国5,美国格拉兹大学,格拉兹大学87501,奥地利8010,奥地利6综合体网络实验室,物理和天文学系,帕德维亚大学,帕德沃351313131313帕多瓦(Padua),通过Marzolo 8,Padova 35131,意大利8号环球生物学研究所,东京大学研究生学院,东京大学,7-3-1 Hongo,Bunkyo-ku,东京113-0033,日本93-0033,日本99美国马萨诸塞州剑桥市的技术,美国11号生物学系,佐治亚理工学院,亚特兰大,佐治亚州30332,美国12地球生活科学研究所,东京理工学院,东京152-8550,日本,
宇宙一直在向我们招手,从早期的观察者,如古罗马人、希腊人和中国人;从十五世纪航海家,如克里斯托弗·哥伦布和十七世纪天文学家,包括伽利略·伽利莱;到今天的航海者。天空中的星星和飞机帮助我们塑造我们的信念、时间、指引我们的航海、发现新事物、发明新方法,并了解世界。当电子、飞机、火箭和计算机出现在地球上时,一些人意识到将海洋和人类投入太空是可能的。我们将不再局限于从地面观察宇宙的奇迹。现在我们可以进入并体验这个奇妙的环境。“最后的边疆”可以被打开。然而,建造一枚火箭将物体送入地球轨道被证明是复杂而昂贵的。在 20 世纪中叶,只有两个国家拥有知识、劳动力和资金来做到这一点——苏联和美国。苏联通过向地球发射一个小球来展示其力量。1957 年 10 月 4 日,苏联成功发射了 Sputnik 1 号,开启了两国之间的“太空战争”,并开启了太空时代。
科学家们已经利用卫星和地面望远镜拍摄了无数张太阳图像。太阳的外观根据光的波长不同而不同。伽利略·伽利莱是第一位用望远镜观察太阳的科学家。他用望远镜一丝不苟地追踪太阳的变化。他的数据首次表明太阳活动会随着时间而变化。 太阳能 太阳能使地球上的生命成为可能。核聚变发生在太阳内核深处,并产生太阳能。当原子在足够高的压力和温度下碰撞时,它们会融合在一起形成新元素,但也会释放出巨大的能量。相反,核裂变是由原子分裂引起的。这个过程也会释放能量。核裂变最常用于核电站。 磁性 地球大气层保护它免受大部分太阳危险辐射的伤害。地球的磁盾,即磁层,也保护我们免受辐射。如下图所示,地球磁场环绕着地球。磁力使太阳辐射偏转,保护了地球。磁层深入太空 36,000 英里。
1个地质流水学研究所,国家研究委员会(CNR),麦当娜·阿尔塔(Madonna Alta)126,06128意大利佩鲁吉亚(Perugia); sara.modanesi@irpi.cnr.it(S.M.); jacopo.dari@unipg.it(J.D.); angelica.tarpanelli@irpi.cnr.it(A.T。); silvia.barbetta@irpi.cnr.it(S.B.); luca.brocca@irpi.cnr.it(l.b。)2地球与环境科学系,库伊文(Ku Leuven),Celestijnenlaan 200E,3001鲁汶,比利时; Alexander.gruber@kuleuven.be(A.G.); gabrielle.delannoy@kuleuven.be(G.J.M.D.L.)3佛罗伦萨大学民用与环境工程系(DICEA),通过DI S. Marta 3,50139意大利佛罗伦萨4号,佩鲁吉亚大学民用与环境工程系,Via G. Duranti 93,06125 Perugia,意大利佩鲁吉亚,意大利,意大利5号,环境科学与政策部5 94720-3114,美国; mgirotto@berkeley.edu 6 Observatori de l'eb,Ramon Llull大学,Carrer Horta Alta 38,43520 Roquetes,西班牙; pquintana@obsebre.es 7 Cesbio,CNES/CNRS/CNRS/INRAE/IRD/UPS,18大道Edouard Belin,Edouard Belin,CEDEX 9,31401 Toulouse Universiationédetoulex Univers; michel.le_page@ird.fr(M.L.P.); lionel.jarlan@ird.fr(L.J.); mehrez.zribi@ird.fr(M.Z。); nadia.ouaadi@univ-tlse3.fr(n.o。)8 LMFE,科学学院Smlalia物理系,卡迪·阿亚亚德大学,马拉喀什4000,摩洛哥9,摩洛哥9号地球和地理知识系,TechnisscheUniversität维也纳(Tu Wien),WiednerHauptraße8-10,1040 Vienna,Outtia,Outhia,WiednerHauptstraße8-10,1040 Vienna; mariette.vreugdenhil@geo.tuwien.ac.at(M.V.); luca.zappa@geo.tuwien.ac.at(L.Z.); wouter.dorigo@geo.tuwien.ac.at(W.D.);拖船。 brumbacher@eleaf.com(J.B。); (H.P.); Pauline.jaquot@eleaf.com(P.J.)11 Global,33 Zithe King,2763卢森堡,卢森堡;西班牙,1,弗拉斯卡蒂,00044罗马,意大利;他们(E.V.); Diego.fernand@sa.int(D.F.P。)*正确:基督徒。
我们还知道,人和机器都会发生故障,所以总会有不正常的情况。事实上,新的安全系统策略是基于故障是系统故障的理念(ASSP,2017)。因此,需要采用全面(系统)的方法来识别和控制故障,并确保我们的工作场所万无一失,也就是说,当故障发生时,不会造成危害。这些方法必须解决包括机械和结构(技术)、行为、人与工作互动(社会技术)、文化(包括组织和个人)和复杂系统(弹性;Pillay,2015)等因素。随着我们管理的系统变得越来越复杂,我们用来控制系统安全的管理系统也变得越来越复杂。事情偏离了我们的计划,我们得到了(通常是不幸的)意外。这给我们带来了如何系统地管理我们的安全管理系统的挑战。质量界为这一挑战提供了绝佳解决方案,特别是二战后质量先驱 Walter Shewhart 和 W. Edwards Deming。Shewhart 和 Deming 带来了计划-执行-检查-行动 (PDCA) 循环,这是许多成功质量计划所固有的循环。PDCA 源自伽利略和弗朗西斯·培根的科学方法。20 世纪 30 和 40 年代,Shewhart 将该方法改进为三个步骤:规范、生产和检查。在日本重建工作中,Deming 进一步发展了 Shewhart 的思想,使其成为 PDCA 的四个步骤 (Moen,2009)。从那时起,PDCA 不仅发展成为质量的基础,也成为所有类型管理系统的基础。ANSI/ASSP Z10、CSA Z1000 和 ISO 45001 均基于 PDCA 方法。不幸的是,通过工作场所受伤,我们了解到人们并没有按照我们想象的那样做。在这种情况下,伤害本身会关闭我们的反馈回路,并产生可能正确实施或可能不正确的(反)反应。