与任何其他简单的液体不同,超冷液体GA是一种复杂的液体,具有共价和金属炭。[2]元素GA形成同素[3-5]及其低熔化温度(29.8°C)的能力使其成为具有高温和电导率的无毒金属材料。[6]在1952年,F.C。坦率地假设,在由大致球形对称性的原子组成的超冷液体中,二十面体短距离阶在能量上有利。[7,8]对于Dectes,超冷液体GA中的异常结构有序在科学社区中引起了极大的关注。在以前的尝试中描述了液体GA,TSAY和WANG [9]的异常特性时,在GA的四面体上报道了由两个二聚体相互互锁的四二二聚体 - 具有四个带有四个原子的指数。与其他邻居相比,最近的邻居原子之一的键长具有更长的键长,因此四面体是不对称的。在短寿命的共价GA二聚体的情况下,键长的长度接近2.44Å是归因于从摩尔圆形动力学模拟中观察到的结构肩部。[2]但是,在群集结构中的GA – GA对分离大于2.5Å,更有可能
每年将在不久的将来生产数十亿个一次性薄膜电子产品,用于智能包装,物联网和可穿戴生物监测贴片。在这些情况下,传统的刚性电池在形式和人体工程学方面也不是最佳的,也不是生态方面的。迫切需要使用薄,可拉伸,弹性且可回收的新型储能设备。在此,提出了一种新型的材料和制造技术结构,允许完全3D打印的软性薄膜电池对机械应变有弹性,如果可修复,可充电,可回收,并且可以在其寿命结束时回收。通过利用数字可打印的超易碎液态金属电流收集器和新型的镀具有镀碳碳阳极电极,AG 2 O-Gallium电池可快速打印并根据应用程序定制。通过优化镀具有耐碳碳复合材料的性能,获得了26.37 mAh cm-2的创纪录的面积容量,在100%应变时10个周期后改善了10.32 mAh cm-2,而前所未有的最大应变耐受性为≈200%。部分损坏的电池可以治愈自己。通过创新的冷蒸气刺激来治愈严重损坏的电池。一个用印刷传感器来监控心脏的数字印刷,泰勒制造的电池健康监控贴片的示例,并证明了呼吸。
摘要 — 从硅上外延生长的氮化镓 (GaN) 开始,设计、制造并表征了集成压电换能器的预应力微谐振器。在夹紧梁中,众所周知,拉伸应力可用于增加谐振频率。在这里,我们计算了预应力梁中平面外弯曲模式的模态函数,并推导出一个模型来预测谐振频率和压电驱动因子。我们表明,理论和实验结果之间可以获得良好的一致性,并推导出机电转换的最佳设计。最后,我们的模型预测了由于拉伸应力导致的品质因数增加,这已通过真空下的实验测量得到证实。这项研究展示了如何利用外延工艺产生的材料质量和初始应力。
美国对i的偏重性是美国的重点,美国仍然严重依赖于稀土元素的进口,并且缺乏许多关键矿物的紧急库存。根据国会研究局的说法,国防库存(NDS)在当前的库存矿物质和当前的库存要求之间存在135亿美元的差距。缺乏准备使美国处于重大的国家安全风险,尤其是当中国统治着稀土的全球生产和加工时。中国几乎垄断稀有地球具有影响全球市场的能力,并以深远的国家安全和经济影响做出决策。在2024年12月,中国对向美国出口某些关键矿物的禁运,加剧了持续的地缘政治紧张局势。这种限制强调了美国军方对关键技术和武器系统的稀有地球的依赖,进一步强调了对国内供应链的迫切需求。
在其固态上坚硬,可以刺穿软生物组织。然而,当凝胶在插入后遇到体温时会融化,将其转化为像周围组织这样的柔软状态,并允许稳定的药物输送[7]。新的新兴耐甘油针的使用降低了损害血管壁的可能性,它允许患者在注射部位无痛地移动。这是通过针的可调节刚度使其可行的,这使其由于温度环境增加而插入体内时柔软而柔软。薄壁静脉的运动由针头调节。由于畸形的针头即使从注射部位撤回后仍会永久柔软,因此预计还可以防止通过无意的针头杆损伤或不道德的注射器重用带来的血液传播疾病感染[8]。
ABSTRACT ....................................................................................................................... iv
志勇、苍怀兴和杨鑫 2020. 基于薄膜氮化镓 (GaN) 的声流体镊子:建模和微粒操控。超声波 108,106202。10.1016/j.ultras.2020.106202
事实证明,二维层状材料的氧化有利于形成氧化物/二维材料异质结构,这为低功耗电子设备的新范式打开了大门。硫化镓(II)(𝜷-GaS)是一种六方相 III 族单硫属化物,是一种宽带隙半导体,单层和少层形式的带隙超过 3 eV。其氧化物氧化镓(Ga 2 O 3)兼具大带隙(4.4-5.3 eV)和高介电常数(≈ 10)。尽管这两种材料都具有技术潜力,但原子级厚度的𝜷-GaS 的受控氧化仍未得到充分探索。本研究重点关注使用氧等离子体处理对𝜷-GaS 进行受控氧化,以解决现有研究中的重大空白。结果表明,在暴露于 10 W 的 O 2 时,能够形成厚度为 4 nm 的超薄天然氧化物 (GaS x O y ),从而形成 GaS x O y /GaS 异质结构,其下方的 GaS 层保持完整。通过将此类结构集成在金属电极之间并施加电压斜坡或脉冲等电应力,研究了它们在电阻式随机存取存储器 (ReRAM) 中的应用。所产生的氧化物的超薄特性可实现低操作功率,能耗低至每次操作 0.22 nJ,同时分别保持 350 次循环和 10 4 s 的耐久性和保持力。这些结果表明基于氧化的 GaS x O y /GaS 异质结构在电子应用,特别是低功耗存储设备中具有巨大的潜力。
摘要:我们提出了一种自下而上的成功方法,设计了一种通用的等离子体增强原子层沉积 (PEALD) 超循环配方,以在 150°C 的相对低温下生长具有可调成分的高质量铟镓锌氧化物 (IGZO) 薄膜。原位实时椭圆偏振表征与非原位互补技术相结合,已用于优化薄膜的沉积工艺和质量,方法是识别和解决生长挑战,例如氧化程度、成核延迟或元素组成。开发的超循环方法通过调整超循环过程中的子循环比,可以轻松控制目标成分。与其他产生非晶态薄膜的低温沉积技术相比,我们在 150°C 下的 PEALD-IGZO 工艺可产生近乎非晶态的纳米晶态薄膜。通过超循环 PEALD 方法在低温下制备 IGZO 薄膜可以控制厚度、成分和电性能,同时防止热诱导偏析。关键词:IGZO、PEALD、超循环、XPS 深度剖析、电流密度