本文介绍了一种用于雷达应用的新型 X 波段碳化硅 (SiC) 共面波导 (CPW) 单片微波集成电路 (MMIC) 高功率放大器 (HPA) 设计。在设计中,采用了 0.25 μ m γ 形栅极和高电子迁移率晶体管 (HEMT),它们采用了碳化硅基氮化镓技术,因为它们具有高热导率和高功率处理能力。此外,在 8.5 GHz 至 10.5 GHz 的频率范围内,反射系数低于 -10 dB,可产生 21.05% 的分数带宽。此外,MMIC HPA 在 2 GHz 带宽内实现了 44.53% 的功率附加效率 (PAE),输出功率为 40.06 dBm。此外,由于 MMIC HPA 具有高输出功率、宽工作带宽、高 PAE 和紧凑尺寸,因此非常适合用于 X 波段有源电子扫描阵列雷达应用。索引术语 — 有源电子扫描阵列 (AESA) 雷达、共面波导 (CPW)、碳化硅 (SiC) 上的氮化镓 (GaN)、高电子迁移率晶体管 (HEMT)、单片微波集成电路 (MMIC)、高功率放大器 (HPA)。
本发明将薄膜和基底之间存在错配应变时材料行为的变化关联起来。为了量化目的,发明人对沉积在厚蓝宝石/硅基底上的氮化镓 (GaN) 薄膜进行了纳米压痕数值实验,以评估薄膜中的负载与变形。这对于电子工业和 MEMS、NEMS、LED 等设备非常重要,因为变形的微小变化会影响这些设备的性能。印度专利
TagoreTech 成立于 2011 年 1 月,致力于开发用于高功率射频 (RF) 应用的硅基氮化镓 (GaN-on-Si) 半导体技术。TagoreTech 是一家无晶圆厂半导体公司,在美国伊利诺伊州阿灵顿高地和印度加尔各答设有设计中心。我们的研发团队致力于利用宽带隙技术开发颠覆性解决方案,为我们的客户带来显著的尺寸、重量和功率 (SWaP) 优势。如需了解更多信息,请访问 www.tagoretech.com
另一项重要的技术是X波段双固态功率放大器(DSSPA)围绕高功率放大器IC构建,并基于硝酸盐(GAN)技术,这项技术首次飞入太空。此放大器可提供高RF功率水平,具有很高的可靠性,并且在高温环境中表现出色。这使其非常适合在温度变化可能是极端的空间应用中。
wen.zhu@baesystems.com (603) 885-5681 关键词:氮化镓 (GaN)、Ka 波段、MMIC、PAE 摘要 本文报告了 AFRL 的 4 英寸 140nm GaN-SiC 技术向 BAE 系统微电子中心 (MEC) 代工厂的转移和生产实施情况。我们将 AFRL 和 BAE 系统 GaN-SiC 的最佳技术集成到用于 Ka 波段和 Q 波段的 6 英寸 140nm GaN-SiC 生产工艺中,这是业界首个 6 英寸 140nm GaN-SiC 生产工艺。本文介绍了脉冲 IV (pIV)、FET 负载牵引、MMIC 性能和可靠性结果。 引言 2018 年,BAE 系统的 MEC 代工厂与 AFRL 合作,将 140nm 4 英寸 GaN-SiC 技术转移到 6 英寸 GaN-SiC。该计划的关键技术目标是通过转移和整合 AFRL 开发的关键工艺技术[1, 2]以及 BAE 系统现有的 GaN MMIC 工艺和能力,在位于新罕布什尔州纳舒厄的 BAE 系统代工厂建立一流的 140nm 氮化镓 (GaN) 生产技术,以实现 6 英寸 SiC 上 GaN 的高性能、高 MRL 工艺[3]。通过这项短栅极高效氮化镓 (GaN) 单片微波集成电路 (MMIC) 可生产性计划,BAE 系统正在满足美国国防部 (DoD) 的迫切需求,即建立一个可供美国国防界使用的开放式 GaN 代工厂,并提供先进的 GaN MMIC 工艺。开放式代工服务 - BAE 系统 BAE 系统 III-V 族化合物半导体代工厂是一项战略资产,可为其电子系统部门提供独特的 MMIC 技术。为美国国防部提供代工服务是为了更有效地利用我们代工厂的产能,锻炼和改进工艺,并加强与国防部外部供应商和政府机构的关系。完成 GaN 生产向 6 英寸晶圆直径的过渡是 140nm 技术活动下的一项关键任务。仅此一项就能将有效代工能力提高 2 倍以上。BAE Systems 目前正在投资其代工厂,更换工具,消除单点故障,同时满足生产需求。
Ag silver Al aluminium APS Announced Pledges Scenario As arsenic a-Si amorphous silicon ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer Au gold B boron B20 Business 20 Ba barium Be beryllium Bi bismuth C carbon CAIT Climate Analysis Indicator Tool CdTe cadmium-telluride Ce cerium CIGS铜 - 印度 - 二苯胺 - 二硫化物co钴二氧化碳二氧化碳COP会议CR铬 erbium Eu europium EV electric vehicles EW electrowinning F fluorine FC Fuel cell Fe iron Ga gallium GATT General Agreement on Tariffs and Trade Gd gadolinium Ge germanium GHG greenhouse gas GIS Geographical Information System Gt giga tonne GW giga watts Hf hafnium HLT hard-rock lithium Ho holmium HPAL high-pressure acid leaching IEA International Energy Agency In indium IPCC政府间气候变化小组IR IRIDIUM IRIDIUM IRENA RENEWABLE能源局IRTC国际材料国际圆桌会议批判性KT KILO TONNES
1 适用的关键矿产包括特定形式的铝、锑、砷、重晶石、铍、铋、铈、铯、铬、钴、镝、铒、铕、萤石、钆、镓、锗、石墨、铪、钬、铟、铱、镧、锂、镥、镁、锰、钕、镍、铌、钯、铂、镨、铑、铷、钌、钐、钪、钽、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆。
ISL70040SEH 和 ISL73040SEH 低侧氮化镓 (GaN) 场效应晶体管 (FET) 驱动器以及 ISL70023SEH 和 ISL70024SEH GaN FET 可用于运载火箭和卫星以及井下钻探和高可靠性工业应用中的初级和次级 DC/DC 转换器电源。这些设备为铁氧体开关驱动器、电机控制驱动器电路、加热器控制模块、嵌入式命令模块、100V 和 28V 电源调节以及冗余切换系统供电。
在5G时代之前,硅基横向双扩散金属氧化物半导体(Si-LDMOS)是4G LTE射频功率放大器市场的主流方案,目前已基本成为主流,技术成熟度较高。传统Si-LDMOS在3.5GHz以下频率表现良好,但无法满足5G应用对更高频率的要求。砷化镓(GaAs)应用工作频率主要在8GHz以内,适用于5G基站的中低功率器件。在高功率射频应用中,氮化镓(GaN)优势明显,是5G宏站的必备材料。GaAs和GaN凭借更优的功率系统效率、性能和成本,有望取代硅成为功率开关技术的支柱。作为宽带隙(WBG)半导体材料,GaAs和GaN器件的效率均高于Si。 GaAs/GaN 器件正在取代 5G 基站、雷达和航空电子设备以及其他宽带应用中的 Si-LDMOS 器件。在未来的网络设计中,由于物理特性的限制,GaAs/GaN 和其他 WBG 材料将取代大多数现有的 Si-LDMOS 器件 [1]。一般来说,5G 基站将采用基于 GaAs/GaN 的 PA 来实现更高的频率,而 Si-LDMOS 仍将只是其中的一部分,用于较低频率
在通常称为升华生长的物理气相传输 (PVT) 中,保持在特定温度下的源材料会升华,其蒸气通过扩散和对流传输到保持在较低温度下的籽晶,在那里可以结晶。碳化硅 (SiC)、氮化镓 (GaN)、氮化铝 (AlN)、氧化锌 (ZnO) 和其他材料作为下一代功率器件引起了人们的关注。这些单晶制造工艺涉及高温和恶劣环境,使用氨和氯化氢等腐蚀性气体。
