董事会 Susan Ford Dorsey,主席 Paul Kwan,副主席 Dan Bomze Cynthia J. Brandt,博士,总裁兼首席执行官 Jeff Chambers Lisa Cole Jonathan Coslet Kate Dachs Jennifer Duda,医学博士 Elizabeth Dunlevie Jane Dunlevie Yasser Y. El-Sayed,医学博士 Paul Fisher,医学博士 Chris Gallo David George Cindy Goldberg Tonia Karr Paul King Julie Lee Mary B. Leonard,医学博士,MSCE John Lillie Mo Makhzoumi Yvonne“Bonnie”Maldonado,医学博士 Lloyd Minor,医学博士 Peter Munzig Katherine Orr Susan P. Orr Mindy Rogers Michelle Sandberg,医学博士 Celina Tenev Bill Thompson Nina Wanstrath Charlotte Waxman Elizabeth Weil 发展领导力 Cynthia J. Brandt,博士,总裁兼首席执行官 Sarah Collins,高级副总裁,主要董事 Jim Deasy,高级副总裁,开发 Andrew Kaufteil,高级副总裁,战略传播 Payal Shah,副总裁,转型捐赠 编辑 Jennifer Yuan 副编辑 Jodi Mouratis 网络编辑 Veronica Saitta 特约撰稿人 Megan Alpers-Raschefsky Julie Hannon Jennie Lin Beth Tagawa 设计 TANKindustries 摄影 Fred Greaves 摄影 Emily Hagopian Ana Homonnay Douglas Peck
2。配置和车身的轨迹,用于空间的车辆。董事会Lazillo。AA 2009/2010。第二纳波利斯大学。工程学院。教授Vivian Antonio。3。超级进入窗户钢的非设备分析。Cristilla科学。 AA 2010/2011。 第二纳波利斯大学。 工程学院。 教授Vivian Antonio。 4。 流场糊到超级进入野生等离子体骑行的非国家分析。 罗伯托·加洛(Roberto Gallo)。 AA 2010/2011。 第二纳波利斯大学。 工程学院。 教授Vivian Antonio。 5。 <2>飞机涡轮增压器系统和比较比较数据的飞机分析的热流体动力学。 Barbat传说。 AA 2011/2012。 “ Federic II”那不勒斯大学。 工程学院。 <潜水>杀死。 354/197。 教授Bianco Nicole。 6。 Aerothermal Aerthoter Airthermal飞机在Fuly Couty方法的全部工作中。 Gennaro Buonomo。 AA 2012/2013。 “ Federic II”那不勒斯大学。 工程学院。 <潜水>杀死。 65/122。 教授Bianco Nicole。 7。 飞机飞机的种子中心速度。Cristilla科学。AA 2010/2011。第二纳波利斯大学。工程学院。教授Vivian Antonio。4。流场糊到超级进入野生等离子体骑行的非国家分析。罗伯托·加洛(Roberto Gallo)。AA 2010/2011。第二纳波利斯大学。工程学院。教授Vivian Antonio。5。<2>飞机涡轮增压器系统和比较比较数据的飞机分析的热流体动力学。Barbat传说。AA 2011/2012。“ Federic II”那不勒斯大学。工程学院。<潜水>杀死。354/197。教授Bianco Nicole。6。Aerothermal Aerthoter Airthermal飞机在Fuly Couty方法的全部工作中。Gennaro Buonomo。AA 2012/2013。“ Federic II”那不勒斯大学。工程学院。<潜水>杀死。65/122。教授Bianco Nicole。7。飞机飞机的种子中心速度。救助者救助家。AA 2012/2013。“ Federic II”那不勒斯大学。工程学院。<潜水>杀死。N35/000724。教授Gennaro Cardon。8。Hyperynsonic飞机有动力的女巫窗的精美设计。Elan Dark candidat。AA 2012/2013。第二纳波利斯大学。多晶勺和基础科学。航空航天工程中的四分之一。<潜水>杀死。A15/000012。教授Vivian Antonio。9。到涡轮螺旋桨飞机在地面和巡航条件下进入的年度油冷却系统的热流体动力学分析。flave tocano。AA 2013/2014。<2>那不勒斯大学。多晶勺和基础科学。劳拉(Laura)与机械工程有关。<潜水>杀死。M65000213。PROFF。必须,Bianco Nicole,Joseph Josal。 10。 实验战斗文本车辆(EFTV)和必须,Bianco Nicole,Joseph Josal。10。实验战斗文本车辆(EFTV)和
在过去的300年中主要是狂野到人为的(Newbold等人2014; WWF 2016)。将这个热带岛屿国家的森林状况与中欧捷克共和国进行比较是一个相似规模的国家很有趣的。与捷克共和国相比: - 捷克共和国:34.1%(FMI 2022) - 斯里兰卡:29.8%:29.8%(FRA 2020) - 捷克共和国的总森林面积:2 680 372公顷(MOA 2023)(MOA 2023)(2023年) - Sri Lanka的总森林森林较高:1 955 178 Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha:Cove avecover。森林覆盖率比斯里兰卡(Sri Lanka)(差4.3个百分点或718 214公顷的差异)。虽然捷克共和国和斯里兰卡在森林覆盖百分比方面具有相似性,但它们的树种构成完全不同。捷克共和国以挪威云杉和苏格兰松树等针叶性物种为主,而斯里兰卡则拥有较高比例的阔叶树,而主要森林百分比较高。斯里兰卡的热带气候和多样化的生态系统为中欧温带森林的森林管理带来了截然不同的背景。捷克共和国展示了适合其气候和树种的独特造林实践(例如,Gallo等。 2018; Brichta等。 2023; Černý2023; Vacek等。 2020,2023)。 了解斯里兰卡的森林覆盖动态,为全球热带森林生态系统提供了宝贵的见解。 斯里兰卡最近最近的森林管理问题强调了全球范围内面临的挑战。 其他捷克专家包括。Gallo等。2018; Brichta等。2023; Černý2023; Vacek等。2020,2023)。了解斯里兰卡的森林覆盖动态,为全球热带森林生态系统提供了宝贵的见解。斯里兰卡最近最近的森林管理问题强调了全球范围内面临的挑战。其他捷克专家包括。通过将这些趋势与欧洲中部的趋势相结合,例如在捷克共和国,我们可以对全球森林人类的战略有更全面的了解。有趣的是,捷克人的公众历史上经历了类似的压力(人口增长和随后的城市,森林覆盖率下降,农业和工业发展等等。),展示了这些地理上不同地区之间知识交流和协作的潜在途径。由于这些原因,在斯里兰卡的生物多样性压力很大,而当地和捷克森林人之间的合作正在开发,目的是为解决这些问题做出贡献。捷克森林人与东南亚的森林人的合作具有悠久的传统。为了表明,E.Václav教授在孟加拉国,老挝和越南的粮农组织下从事林业的几个项目。J.Slavický
由Redgdps专家的报告进行审查:AnaCebriánCuenca,Ane Urbina法官,Ángeles的ÁlvarezHermida,BelénBenitobenito badorrey,CarlosGómezRuiz,Carloshernánánánánánándeeminigno Enrique Carreter FranciscoCarramiñanaBarrera,FranciscoBartoloméResano,Francisco JavierOrtegaRíos,Igotz Aranbarri Osoro,JoséjoséjavierJavier Mediavilla勇敢M.ªDelRosarioSerranoMartín,Margarita AlonsoFernández,MateuSeguíDíaz,JorgeNavarroPérez,Noelia Sanz Vela,Nuria Casado Pradas,OlgaGómezRamón,PedroMuñozCacho,Perrias rourio slier x ettudurí。 div>
1:30 pm 10-1 :(被邀请)类似基于变压器的语言模型(被邀请)类似类似的硬件加速器»Geoffrey W. Burr(美国)1,Hsinyu Tsai(美国)1,IEM Boybat(瑞士)博士(瑞士)2,William A. Simon(Switzerland) Vasilopoulos(瑞士)2,Pritish Narayanan博士(美国)1,Andrea Fasoli博士(美国)1,Kohji Hosokawa先生(日本)3(日本)3,Manuel Lealoo(瑞士)博士(瑞士)2国家)1,查尔斯·麦金(Charles Mackin)(美国)1,埃琳娜·费罗(Elena Ferro)(瑞士)2,Kaoutar El Maghraoui博士(美国)4,Hadjer Benmeziane博士(瑞士)2,Timothy Philicelli(美国)5,美国的Timothy Philicelli博士(瑞士) ,Shubham Jain博士(美国)4,Abu Sebastian博士(瑞士)2,Vijay Narayanan博士(美国)4(1。IBM研究-Almaden,2。IBM Research Europe,3。IBM东京研究实验室,4。 IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM东京研究实验室,4。IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM T. J. Watson Research Center,5。IBM Albany Nanotech)IBM Albany Nanotech)
1:30 pm 10-1 :(被邀请)类似基于变压器的语言模型(被邀请)类似类似的硬件加速器»Geoffrey W. Burr(美国)1,Hsinyu Tsai(美国)1,IEM Boybat(瑞士)博士(瑞士)2,William A. Simon(Switzerland) Vasilopoulos(瑞士)2,Pritish Narayanan博士(美国)1,Andrea Fasoli博士(美国)1,Kohji Hosokawa先生(日本)3(日本)3,Manuel Lealoo(瑞士)博士(瑞士)2国家)1,查尔斯·麦金(Charles Mackin)(美国)1,埃琳娜·费罗(Elena Ferro)(瑞士)2,Kaoutar El Maghraoui博士(美国)4,Hadjer Benmeziane博士(瑞士)2,Timothy Philicelli(美国)5,美国的Timothy Philicelli博士(瑞士) ,Shubham Jain博士(美国)4,Abu Sebastian博士(瑞士)2,Vijay Narayanan博士(美国)4(1。IBM研究-Almaden,2。IBM Research Europe,3。IBM东京研究实验室,4。 IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM东京研究实验室,4。IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM T. J. Watson Research Center,5。IBM Albany Nanotech)IBM Albany Nanotech)
引言 人工智能改变了每个行业。它涉及构建智能机器来执行以前需要人类智能才能完成的任务。它节省了每个组织的时间和金钱,还提供了很好的见解 (GALLO, 2022)。组织希望保持竞争力并吸引下一代客户和员工,为此他们需要采用最新的趋势和技术。采用基于人工智能的会计和财务系统以及向利益相关者提供财务报告将有助于金融公司实现这些目标。将人工智能添加到财务报告还会减少错误,从而提高工作质量。 研究目的 本研究的目的是确定人工智能在提高向利益相关者提供的财务报告质量方面的重要性。这将有助于了解其在金融行业中的应用和重要性。它还将有助于评估人工智能在高质量财务报告中的使用情况,这对每个组织来说都是必需的。 研究问题 获取和留住客户是每个组织最重要的任务。新一代正在寻找最新的趋势和技术。因此,每个组织都必须采用最新技术 (Yang, Zhou and Sun, 2022)。公司还在财务报告上投入了大量的时间和资源。借助替代品,这些时间和资源可以得到更好的利用,从而提高效率。研究意义这项研究很重要,因为人工智能是过去几年最热门的话题之一。虽然人们对人工智能的关注度很高,但人工智能的好处仍未得到有效传达。各行各业的大多数企业仍然相信人类的判断,而不是计算机智能。因此,向组织的利益相关者传达采用人工智能对提高财务报告质量的好处变得非常重要。
人类文明的进步取决于各种材料的发展。现代科学的建立导致了合成材料的快速发展。但是,迫切需要增加能源需求和环境污染,需要寻找新材料来解决能源和环境危机。碳本质上是极富丰富的元素,为地球上所有生命提供了基础(Li等,2008; Toth等,2016)。碳原子在核外有六个电子,其最外面的电子排列为2 s 2 2 p 2,显示出强大的形成共价键的能力(Krueger,2010)。多孔碳材料具有优势,例如化学稳定性,低密度,高导热率,高电导率和高机械强度(Gallo,2017)。多孔碳材料还具有较大的特定表面积,可调节的孔径和功能组,并且可以以相对较低的成本从多种前体制备。近年来,许多研究人员致力于多孔碳的合成和应用(Ang,2019; Liu,2019; Liu,2020a; Hwang,2020; Raj,2021)。取决于孔径分布,碳材料的孔结构可以分为三类,即微孔(孔径<2 nm),中孔(2 nm <孔径<50 nm)和大孔(孔径> 50 nm)(VU,2012年)。多孔碳材料的孔结构的大小对它们在实际应用中的性能产生了重大影响。重要的是,进一步讨论了碳材料的未来方向。由于这些优势,碳材料被广泛用于吸附范围(HE,2019年),催化(Dong等,2020)和储能(Peng,2019年)。本文主要引入碳材料的合成和应用,并描述了当前碳材料的主要改进思想(图1)。
dev> dennis诉Chiristensen 1,Regina Dittmann 2,Bernabe Linares-Barranco 3,Abu Sebastian 4,Manuel Le Gallo 4,Andrea Redaelli 5,Stefan Slesozeck 6,Slesozeck 6,Thomas Mikolajick 6,7 Shi-jun。 Liang 12,Feng Miao 12,Mario Lanza 13,Tyler J Quill 14,Scott T Keene 15,Alberto Salleo 14,Julie Grollier 16,Danijela Markovi´ c 16,Alice Mizrahi 16,Peng Yao 17,Peng Yao 17,J Joshua Yang 17,J Joshua Yang 17,Giacomo Indventa,Johiacomo Indventa,John dim suna stra,约翰·鲍安·鲍安·鲍安·帕纳,亚历山大·瓦伦蒂安22,约翰内斯·费尔德曼(Johannes Feldmann)1,Xuan li 23,Wolfram H P Pernice 24,25,Harish Bhaskaran 23,Steve Furber 26,Emre Nefti 27,Franz Scherl 27,Franz Scherl 28,Wolfggang Maass 28,Srikanth Ramaswamy 29 Kim 31,Gouhei Tanaka 32,Simon Thorpe 33,Chiara Bartolozzi 34,Thomas,Cleland 35,Christoph Posch 36,Shihchii Liu 18,Gabriella Panuccio 37 18,西尔维亚·托卢(Silvia Tolu), 14,Roberto Galeazzi 40,Martin Ejsing Christensen 41,Sune Holm 42,Daniele Ielmini 43和N Pryds 1
丹尼斯·V·克里斯滕森(Dennis V. Liang 12,Feng Miao 12,Mario Lanza 13,Tyler J. Quill 14,Scott T. Keene 15,Alberto Salleo 14,Julie Grollier 16,DanijelaMarković16,Alice Mizrahi 16,Peng Yao 17,Peng Yao 17,J. Joshua Yang Yang Yang Yang Yang 17,Giacomoo Indiveri 18,John Pair Strachan,John Pair Strachan 19,199 Suman Datta 20,Elisa Vianello 21,Alexandre Valentian 22,Johannes Feldmann 23,Xuan Li 23,Wolfram HP Pernice 24,25,Harish Bhaskaran 23,Steve Furber 26,Emre Neftci 27 31,Youngeun Kim 31,Gouhei Tanaka 32,Simon Thorpe 33,Chiara Bartolozzi 34,Thomas A. Cleland 35,Christoph Posch 36,Shih-Chii Liu 18,Gabriella Panuccio 37 39、Tinoosh Mohsenin 39、Elisa Donati 18、Silvia Tolu 40、Roberto Galeazzi 40、Martin Ejsing Christensen 41、Sune Holm 42、Daniele Ielmini 43 和 N. Pryds 1,44。