摘要。生成模型允许创建高度现实的人造样品,从而在医学成像中开放了有希望的应用。在这项工作中,我们提出了一种基于多阶段编码器的方法,以将生成对抗网络(GAN)的发电机倒入高分子胸部X光片。这可以直接访问其隐式形成的潜在空间,使生成模型更容易被研究人员访问,并使其能够将生成技术应用于实际患者的图像。我们研究了此嵌入的各种应用程序,包括图像压缩,编码数据集中的分离,引导图像ma-nipulation以及创建程式化样品的创建。我们发现,这种类型的GAN反转是胸部X光片建模领域的一个有希望的研究方向,并为将现实的X射线样品合成与放射学图像分析结合起来开辟了新的方法。
近年来,氮化镓 (GaN) 高电子迁移率晶体管 (HEMT) 受到航天电子界越来越多的关注。尽管 GaN 的电子质量优于 Si,电子迁移率更高,热导率优于砷化镓 (GaAs),但后者的辐射硬度研究已有数十年 [1],并且普遍得到充分了解。航天电子设备面临的主要威胁之一是重离子轰击引起的单粒子效应 (SEE)。虽然大多数此类事件是由银河宇宙射线 (GCR) 造成的,但这些粒子的能量通常比实验室环境中产生的更高。作为一种折衷方案,人们使用低能离子来产生类似的效果。通过这些重离子测试,结合工程控制和统计模型,通常可以可靠地预测电子设备的辐射硬度。在过去的 15 年里,人们对 GaN 设备 [2-7] 的 SEE 和位移损伤剂量 (DDD) 进行了广泛的研究和测试。不幸的是,即使是这些低能量重离子也只有全球少数几家工厂生产。一种更常见的高能粒子是质子。在医疗行业中,约 200 MeV 的质子被大量用于治疗和诊断目的,与重离子相比,它相对容易获得 [8]。许多研究
摘要 — 众所周知,MRI 数据集中的扫描仪间和协议间差异会导致显著的量化差异。因此,图像到图像或扫描仪到扫描仪的转换是医学图像分析领域的一个重要前沿,具有许多潜在的应用。尽管如此,现有算法中很大一部分无法明确利用和保留目标扫描仪的纹理细节,并且针对专门的任务特定架构提供单独的解决方案。在本文中,我们设计了一种多尺度纹理传输,以丰富重建图像的更多细节。具体而言,在计算纹理相似性后,多尺度纹理可以自适应地将纹理信息从目标图像或参考图像传输到恢复图像。与以前的算法所做的像素级匹配空间不同,我们在神经空间中实现的多尺度方案中匹配纹理特征。匹配机制可以利用多尺度神经传输,鼓励模型从目标或参考图像中掌握更多与语义相关和与病变相关的先验。我们在三个不同的任务上评估了我们的多尺度纹理 GAN,无需任何特定于任务的修改:跨协议超分辨率扩散 MRI、T1-Flair 和 Flair-T2 模态转换。我们的多纹理 GAN 可恢复更高分辨率的结构(即边缘和解剖结构)、纹理(即对比度和像素强度)和病变信息(即肿瘤)。广泛的定量和定性实验表明,我们的方法在跨协议或跨扫描仪转换方面取得了优于最新方法的结果。
掺铒GaN(Er:GaN)由于其优于合成石榴石(如Nd:YAG)的物理特性,是固态高能激光器(HEL)新型增益介质的有希望的候选材料。Er:GaN在1.5μm区域发射,该区域对视网膜是安全的并且在空气中具有高透射率。我们报告了对通过氢化物气相外延(HVPE)技术合成的Er:GaN外延层进行的光致发光(PL)研究。HVPE生长的Er:GaN外延层的室温PL光谱在1.5μm和1.0μm波长区域分别分辨出多达11条和7条发射线,这对应于GaN中Er3+从第一(4I13/2)和第二(4I11/2)激发态到基态(4I15/2)的斯塔克能级之间的4f壳层内跃迁。这些跃迁的观测峰值位置使得我们能够构建 Er:GaN 中的详细能级。结果与基于晶体场分析的计算结果非常吻合。精确确定 4 I 11/2、4 I 13/2 和 4 I 15/5 状态下斯塔克能级的详细能级对于实现基于 Er:GaN 的 HEL 至关重要。© 2020 作者。除非另有说明,否则所有文章内容均根据知识共享署名 (CC BY) 许可证获得许可(http://creativecommons.org/licenses/by/4.0/)。https://doi.org/10.1063/5.0028470
功率放大器 (PA) 技术对于国防和商业领域毫米波 (mm-wave) 通信系统的未来至关重要。这些毫米波频率下的大气衰减很高,因此需要能够抵消这种影响的高功率 PA。氮化镓高电子迁移率晶体管 (GaN HEMT) 凭借其宽带隙和高电子速度,已成为在毫米波频率下提供高功率的主要竞争者。为了改进传统的 GaN HEMT 异质结构,我们之前在氮化铝 (AlN) 平台 [1] 上引入了 HEMT,使用 AlN/GaN/AlN 异质结构。二元 AlN 的最大化带隙可防止缓冲器漏电流并增加 HEMT 击穿电压,同时还提供更高的热导率以增强通道温度管理。此外,GaN 增加的极化偏移允许高度缩放的顶部势垒,同时仍能诱导高密度二维电子气 (2DEG)。我们最近展示了 RF AlN/GaN/AlN HEMT 中高达 2 MV/cm 的高击穿电压 [2],以及这些 HEMT 在 6 GHz 下的 RF 功率操作,功率附加效率为 55%,输出功率 ( ) 为 2.8 W/mm [3]。在这项工作中,我们展示了 AlN/GaN/AlN HEMT 的首次毫米波频率操作,显示峰值 PAE = 29%,相关 = 2.5 W/mm 和 = 7 dB 在 30 GHz 下。
摘要 - 用氧气和碳植入的氮化甘露的氮化岩在室温下显示载体介导的自旋机制。使用Tris(环戊二烯基)Gadolinium前体通过金属有机化学蒸气沉积生长的GD掺杂的GAN显示出普通的霍尔效应,并且在室温下没有浪漫主义。在o或c植入GD掺杂的GAN中,观察到表明载体介导的自旋和铁磁性的异常大厅效应。即使在植入后也保持良好的晶体质量。o和c偏爱间质站点,并在GD掺杂的GAN中占据了深层的受体型状态。由GD掺杂的GAN诱导的gadolinium诱导的室温自旋和铁磁性被占据间隙部位的O和C激活。载体介导的自旋功能的机制显示了对控制和操纵自旋作为氮化壳中的量子状态的潜力。这使gagdn:o/c成为室温旋转和量子信息科学应用的潜在半导体材料基础。在本文中,研究了使用离子植入,使用X射线衍射的结构表征在GD掺杂GAN中掺杂,并研究了使用高级HALL效应的自旋相关测量,并进行了相应的讨论。
MRI超级分辨率(SR)和Denoising任务是深度学习领域的挑战,传统上被视为具有分隔的配对培训数据的不同任务。在本文中,我们提出了一种创新的方法,该方法使用单个深度学习模型同时解决这两个任务,从而消除了在培训期间对明确配对嘈杂和干净的图像的需求。我们提出的模型主要是针对SR训练的,但在超级分辨图像中也表现出显着的噪声清洁功能。而不是将与频率相关操作引入常规过程的常规方法,我们的新方法涉及使用以频率信息歧视器为指导的GAN模型。为了实现这一目标,我们利用3D离散小波变换(DWT)操作的功率作为GAN框架内的频率结合,用于磁共振成像(MRI)数据的SR任务。特别是我们的分配包括:1)基于残差 - 残基连接块的3D发电机; 2)将3D DWT与1×1卷积的3D DWT集成到3D UNET内的DWT+CORV单元中; 3)训练有素的模型用于高质量的图像SR,并伴随着Intrinsic denoising过程。我们将模型“ deno诱导的超分辨率gan(disgan)”配音,原因是其对SR图像产生和同时降解的双重影响。与传统的培训SR和Deno Task作为单独模型的传统方法背道而驰,我们提出的disgan仅受到SR任务的培训,但在DeNoising方面也取得了出色的表现。我们的代码可用 -该模型经过了来自人类连接组项目(HCP)的数十个受试者的3D MRI数据的培训,并对先前看不见的MRI数据进行了进一步评估,这些MRI数据来自患有脑肿瘤和癫痫的受试者,以评估其denosis和SR性能。
基于Gan Schottky屏障二极管(SBD),使用反行二极管对(APDP)的频率三副制作者以3.6 GHz的输出频率进行了建模和建模。此外,明确研究并比较了两种连接方案,即APDP系列APDP和Shunt APDP三倍器。与分流APDP三倍器相比,系列APDP三重序列的输出功率更高-0.14 dbm,最小转化率较小26.9 dB。提出了两种类型三级游戏的精确紧凑型模型,以验证三倍体的产生功率和性能的产生。在紧凑的模型中,从i - v特征和宽带小信号s参数中提取了SBD的非线性香料参数和二极管对的寄生参数。三元器的输入和输出网络被取消安装,以确保谐波模拟的准确性。APDP作为频率三倍器的出色性能和相应的模型为设计RF乘数提供了一种实用的选择。
1。引言电力电子技术始终发展为更高效率,更高的功率密度和更集成的系统[1],[2]。目前,大多数转换器均设计为嵌入到应用程序外壳中,因此其体积受产品案例大小的限制。使用较小的被动元素和较高的开关频率实现了这种尺寸的降低[3],这构成了由于切换和驱动损失而引起的新挑战系统效率[4]。增加系统的功率密度而不影响整体效率需要提高功率开关的进步。不幸的是,基于硅(SI)的功率设备特性正在达到其理论限制,并且在阻断电压能力,操作温度和开关频率限制其使用方面具有重要的局限性[1],[5]。在过去的几年中,基于宽带盖(WBG)半导体材料[6]的新一代电源设备可作为商业货架(COTS)产品使用。WBG半导体,例如碳化硅(SIC)和硝酸盐(GAN),显示出改进的材料特性,使其成为SI Power Devices替换时的绝佳选择。WBG材料的特征是它们的高电场强度,它允许具有高掺杂速率的非常薄的漂移层[7],[8]。因此,基于这些材料的设备受益于降低州立电阻的能力,从而减少了传导损失[9]。此外,WGB材料中的载体移动性比SI优于SI,可以更快地转到 /关闭开关时间,从而降低开关损失。
近年来,5G手机服务已成为主流,移动设备的数据传输变得越来越快,为公众提供基础设施非常方便。与移动设备通信的基站安装在地面上并且不动。如果它们由于自然或人为的灾难而受到损坏,则需要时间,可能会导致大规模和长时间的沟通关闭。相比之下,卫星通信系统在地面上发射到太空站的卫星之间建立了通信。地球站可以安装在车辆中,该车站可以迅速移动到必要的位置,以迅速建立和恢复通讯。此外,即使在很难安装基站的海洋上,卫星通信系统也可以在整个区域内提供通信。因此,卫星通信系统已成为我们生活中必不可少的一部分,因为它的多个优势是一种交流手段。