作为一种新的污染物,微塑料(MPS)以其对不同生态系统和生物体的负面影响而闻名。MPS因其小体积而被生态系统轻松地以各种或Ganism的形式吸收,并在受影响的生物体中引起免疫,神经和呼吸道疾病。此外,在受影响的环境中,MP可以释放有毒的作用,并充当特定微生物定植和运输的载体和支架,并导致微生物群和生物地球化学和营养素动态的失衡。为了解决控制MPS对微生物群和生态系统污染的担忧,MPS的微生物生物降解可能被视为有效的环境友好方法。提出的论文的目标是提供有关MPS对微生物群的毒理作用的信息,以讨论MPS微生物定植的负面影响,并以MPS的生物降解能力引入微生物。
长期以来,已经认识到受伤细胞的存在,并且不仅在与微生物检测和计数的培养方法相关的方法方面不仅被认为是重要的,而且在灭菌,消毒和适用于食品,药物,药物,药品以及各种环境应用的消毒过程和消毒过程中也很重要。尤其是在食品工业中,食品质量和灭菌之间存在一种贸易,并且对受伤的微生物感兴趣,1984年;古尔德(Gould)1989; WU 2008; Wesche等。2009; Tsuchido 2018)。近年来,从基本微生物学的角度来看,与培养和计数方法有关的基本微生物学的角度与生存,发展和文化有关,以及对各种生活和垂死的各种环境反应机制的生态意义,以及各种环境反应的机制,以及各种环境应对的机制,以及lie 3 lie的生态意义。 Cebrián等。2017; Tsuchido和Sakamoto 2018; Tsuchido和Asada 2020)。生命与
摘要:Bronikowski博士通过整合遗传学,生理学和生物人口统计学领域来研究压力和衰老的生物学。她的实验室研究了涉及复杂压力表型的基因网络的分子演化,这些网络对衰老率和寿命的扰动的影响以及应激反应的生理原因和影响。实验室采用了实验方法,可以补充模型生物中表型的突变研究,并且他们研究了各种物种的进化过程,以揭示解决压力弹性降低和性能降低的解决方案。Bronikowski博士的重点是线粒体基因组,线粒体功能,效率,氧化应激和全或Ganism代谢,以了解压力和早期环境的影响。她还专注于基因组基因局和对年龄和压力的转录响应,并在羊膜中产生了和分析了保守应力网络中分子进化特征的核基因组。最近,他们获得了资金来研究男性和女性在跨动物的生命率和寿命方面的差异。在这些实验中,它们集中在羊膜的野生种群上,并随着年龄的增长检查:染色质访问,基因表达,DNA修复效率和线粒体健康。使用系统发育比较方法在Evo litutionary上下文中分析了这些结果。
摘要:环境微生物学一直是环境研究的重要组成部分,因为它为大多数污染物提供了有效的解决方案。因此,有兴趣研究微生物行为,例如观察,识别,污染物降解者的分离以及微生物物种之间的相互作用。为了全面了解细胞异质性,需要在单细胞水平上采用多种方法。到目前为止,诸如培养皿等传统的散装生物工具对于单细胞在技术上具有挑战性,这可能掩盖异质性。单细胞技术可以通过检测个体细胞之间的异质性来揭示复杂且稀有的细胞种群,从而提供了更高分辨率,更高吞吐量,更准确的分析等的优势。在这里,我们从方法和应用方面概述了几种有关观察,隔离和识别的单细胞技术。显微镜观察,测序识别,流量细胞仪识别和隔离,基于拉曼光谱的识别和隔离以及其应用主要讨论。在单细胞水平上进行多技术整合的进一步发展可能会大大推动环境微生物学的研究进度,从而在环境微生物生态学中提供更多的指示。
目的 椰子水含有氨基酸、维生素、抗氧化剂和矿物质,对人体健康有益。然而,由于蛋白质、脂肪和微生物的存在,椰子水会迅速降解,导致保质期缩短和椰子水酸败。热处理对椰子水进行灭菌已被证明能有效消除微生物,但会导致椰子水的感官特性发生重大变化。方法 本研究使用超滤膜和 UV-C 对椰子水进行冷灭菌,以保持椰子水的感官特性和营养成分。改变 UV-C 的辐射剂量和超滤膜的操作压力以获得最佳操作条件。结果 UV-C 灭菌过程不能去除脂肪和蛋白质,而脂肪和蛋白质是导致酸败的成分。超滤灭菌可去除74%的脂肪和31.37%的蛋白质。超滤的微生物去除率高达99.9999%,而UV-C的去除率仅为90%。超滤还能保留椰子水的pH值、总可溶性固形物和风味,同时提高其透明度。结论:根据印尼国家标准(SNI),在0.25 bar的最佳工作压力下,椰子水的保质期可达3天。
磺酰胺由于其抗菌特性和低成本而广泛用于临床和畜牧业。但是,磺酰胺不能被人体或动物完全吸收,50% - 90%将从人体中排出,并通过多种方式进入水域和土壤,从而造成环境心理伤害。植物修复作为一种绿色的原位修复技术已被证明有效地在去除磺酰胺中有效,但是潜在的机制仍然是一个需要进一步研究的问题。为了探索SAS去除与植物之间的关系(S. valius),根源从植物中分泌的根和微型Ganism,研究进行了一系列实验,并使用结构方程模型来量化湿地植物中磺酰胺去除的途径。植物治疗组中磺酰胺的去除率(77.6-92%)明显高于根渗出液治疗组(25.7 - 36.3%)和水处理组(16.3 - 19.6%)。植物摄取(λ1= 0.72 - 0.77)和微生物降解(λ2= 0.31 - 0.38)是去除磺酰胺的最重要途径。可以通过植物的积累,吸附和代谢直接去除磺酰胺。同时,植物可以通过促进微生物降解来间接去除磺酰胺。这些结果将促进我们对植物修复中磺酰胺去除效率的基本机制的理解和提高。
摘要 尽管倾注平板法在微生物质量控制中得到广泛应用,但它也存在某些缺点,包括必须在接种前融化培养基。在本研究中,通过使用较低浓度的琼脂(10 g/L)对培养基的制备进行了改进,琼脂在灭菌过程中与营养物质分离。在食品、化妆品和药品微生物质量控制中经常使用的培养基中评估了新方案,其中包括胰蛋白酶大豆琼脂 (TSA)、Sabouraud 4% 葡萄糖琼脂 (SDA) 和紫红胆汁葡萄糖琼脂 (VRBG)。与传统生产的培养基相比,改进后的培养基显著改善了 SDA 中酿酒酵母、金黄色葡萄球菌、肠道沙门氏菌亚种的生长。在 TSA 中可分离肠杆菌、鼠伤寒沙门氏菌和白色念珠菌,在 VRBG 中可分离大肠杆菌 ATCC 8739 和 ATCC 25922 以及鼠伤寒沙门氏菌。改良的 VRBG 对铜绿假单胞菌也更具选择性。至于物理化学性质,在 TSA 和 VRBG 中观察到 pH 值明显较低,在 TSA 中观察到强度值较低。将琼脂与培养基的其他成分分开灭菌,并将琼脂浓度降低至 10 g/L,可改善微生物生长,并提高倾注平板法中差异培养基的选择性。这些改进可以促进这种培养技术的自动化。
摘要:自然来源的颜料已成为研究趋势,真菌提供了容易获得的替代来源。此外,开发出增加产量,减少过程时间并简化下游处理的新型过程增加了兴趣。从这个意义上讲,这项工作提出了一种替代塔拉莫斯的GH2生物量重新利用来通过使用固定的菌丝体的连续批量产生颜料的替代方法。对不同的支持材料进行了评估,用于色素生产和固定能力。然后,使用Taguchi的方法来确定与真菌固定和色素产生(接种浓度,支持密度,工作量和支持量)相关的四个因素的影响。之后,评估了连续批次中使用T. totoroseus gh2的固定细胞进行色素生产的过程动力学。所有评估的因素都是显着的,并且影响着色素的产生和微生物的生长不同。在改善条件下,固定能力达到99.01±0.37%,与使用自由细胞相比,色素产生的产量高30%。过程动力学表明,生产可以持续三批,受到过度微生物的限制。的确,仍然需要更多的研究,但是塔拉莫斯阿特罗塞乌斯GH2的固定是允许下游处理的强化效果的有希望的策略,因为很容易从发酵介质中删除固定的生物量,从而为进一步的持续过程铺平了铺平的方式。
摘要胃肠道是由数万亿个共同微生物殖民的,这些微生物共同形成了微生物组,并对OR-GANISM稳态做出了基本贡献。肠道免疫系统必须忍受这些受益的共生,同时防止致病生物从系统性扩散中。体液免疫在此过程中起着关键作用,每天都有大量的Im-munoglobulin(Ig)A分泌到管腔中,调节Mi-Crobiome,并防止细菌侵蚀上皮细胞。然而,人们对IgG抗体在肠道中的作用有所增加,包括对新生儿免疫发育,病原体和肿瘤耐药性的有益作用,以及病理在驱动炎症性肠道疾病(IBD)中慢性炎症(IBD)中的病理作用。这些抗体同型在效应函数上有所不同,IgG表现出与IgA相对的促炎能力。因此,导致产生不同抗体同种型的过程,类别转换重组(CSR),需要仔细调节,并由普遍的局部挑战产生的免疫学提示进行了策划。通常,诸如CD40在B细胞上的启动信号导致激活诱导的胞苷脱氨酶(AID)的诱导,但是第二个细胞因子介导的信号决定了哪种Ig重链的表达。虽然驱动肠道IgA反应的细胞因子是对肠道如何产生的IgG反应的清晰度,以及这些提示如何在IBD中发挥功能障碍。在这里,我们回顾了调节肠道中切换到IgA vs IgG的关键机制,这些过程可以在感染和IBD中进行治疗。
植物,动物和人类作为物种以及个体中特征的继承代表了人们对人类生物学现象的思考最古老的概念之一。从一开始就链接到转移,即捐赠 +接受,分别来自母亲或父母的某些材料,分别来自女儿有机体或子女。尽管有一些关于遗产的机理基础的猜测,这些基础是在“ pangenesis”理论的制定中,与查尔斯·达尔文(Charles Darwin)的遗传性有关,生物遗传问题的性质一直保持掩盖,直到最初识别出弗雷德里克(Frederick Griffith)在1922年的细菌转变,直到揭露了1928年的细菌转变,艾弗里,麦卡锡和麦克劳德于1944年。这是分子生物学的一系列关键发现的起点,例如对遗传密码的解密,最终引起了其中心教条,对生命科学和社会产生了根本的后果,例如排除了遗传性特征的遗传可能性。从那时起,遗传与DNA是遗传过程的介体或载体材料的密切相关的,这对于蛋白质的合成既是必要且足够的,并且是遗传中以DNA为中心的遗传观点的遗传观点,用于碱性结构的自我组合,以及完整有机体的发展。在这里,这种观点最有影响力的环境和推定将在与其他生物学物质(例如膜和细胞器)的结果共同划定,以及与生物学遗传中的自我组织和自动化过程有关的过程。