i。网格连接的电力发电来自可再生能源; ii。网格连接的可再生电力发电; iii。电力系统发射因子的工具; iv。燃烧或使用垃圾填埋气; v。关于固体废物处置地点排放的工具; vi。flaring项目排放的工具; vii。在气体流中温室气体质量流量的工具; viii。非 -
*氢存储氢存储对氢燃料电池市场的生长至关重要。燃料电池的技术增长与氢存储解决方案的增长之间存在固有的联系,尤其是在通往大众市场应用的途径中。此类技术包括:•类型3,4型和5型气态存储以及冷冻压缩的,液体氢和固态存储(第11页)•压力调节转移到一致的700 bar,燃油供应流量增加到5 kg / min及以后(第12页)< / div> < / div>
真空泵精确工程和制造服务控制软件功率半导体氘,trium或其他气体融合燃料招募专用金属,例如高级钢普通金属,例如镍,铜工程,采购和建筑公司热管理技术天然锂第一壁材料法律服务的低温设备磁铁RF加热锂(富集)高温超导超导(HTS)胶带激光器(组装)稀土金属激光元件,例如。二极管,激光玻璃
空间动力学实验室正在为 SmallSats 开发一种原型“绿色”混合原型推进系统。该系统基于犹他州立大学专利的高性能绿色混合推进 (HPGHP) 技术。HPGHP 利用 3D 打印丙烯腈丁二烯苯乙烯 (ABS) 独特的介电击穿特性,允许重新启动、停止和重新点火。HPGHP 使用气态氧 (GOX) 作为氧化剂时工作最可靠,但当用高测试过氧化氢 (HTP) 代替时,会出现点火可靠性和延迟问题。这一缺陷是由于 HTP 的高分解能垒造成的。测试表明,氧化铝上的铂等贵金属催化剂可有效分解 90% 的单推进剂形式的 HTP,但分解释放的能量不足以可靠地点燃混合火箭。本研究报告了一种用于混合火箭的非催化热点火方法。使用气态氧预引线引发燃烧,一旦发生完全 GOX 点火,HTP 就会被引入热燃烧室。GOX/ABS 燃烧产生的残余能量会热分解 HTP 流,而游离氧可实现完全 HTP 混合燃烧。本文介绍了使用 90% HTP 和丙烯腈丁二烯苯乙烯 (ABS) 和聚甲基丙烯酸甲酯 (PMMA) 作为燃料的 0.5、1.0 和 5 N 推力水平的原型系统的设计选项和测试结果。
原子层沉积 (ALD) 是微电子行业广泛采用的先进气相薄膜制造技术,用于晶体管和显示器等应用。25 在 ALD 中,不同的气态/汽化金属和共反应物前体被顺序脉冲输入反应腔,每个前体脉冲之后都进行惰性气体吹扫步骤,以在发生所需的表面反应后去除多余的前体分子。由于这些化学表面反应的自限性,ALD 可提供无针孔、高度均匀且保形的薄膜,并可在原子级厚度控制。用于有机薄膜的 ALD 对应方法也是最近才开发的,这种方法称为分子层沉积 (MLD)。26 MLD 采用纯有机气态/汽化前体。最重要的是,ALD 和 MLD 都是模块化的,这意味着为了沉积高质量的金属有机薄膜,可以结合使用 ALD 和 MLD 前体脉冲。 27,28 这种目前蓬勃发展的混合 ALD/MLD 技术已被用于制造数十种新型金属有机薄膜材料,这些材料表现出的有趣功能特性远远超出了纯无机或有机薄膜所能实现的功能特性。29 例如,ALD/MLD 生长的金属有机薄膜的机械性能通常比 ALD 生长的无机薄膜高出几个数量级,这在柔性电子应用等领域非常重要。30,31
作为澳大利亚首家新能源服务站,该站将能够以商业数量分配可再生氢,为吉朗和维多利亚州西南部各行各业的 15 辆氢动力重型车辆提供初始支持。该项目包括一个 2.5 兆瓦质子交换膜 (PEM) 电解器,该电解器能够利用再生水和可再生电力每天生产约 1,000 公斤气态氢,以及一个“快速加氢”加氢包,旨在连续为至少 10 辆卡车或公共汽车加氢。