First Day 08.30 - 09.00 Registration 09.00 - 09.15 Greeting and Introduction 09.15 - 09.30 Training objective, Plan and method 09.30 - 10.00 Module 1: Climate Change Concept & Rationale 10.00 -10.30 Module 2: Climate Change Mitigation Efforts 10.30 - 10.45 Coffee Break 10.45 – 12.00 Module 3: GHG Management Concept & Hierarchy of GHG Management 12.00 - 13.00 Lunch 13.00 - 13.45 Module 4: Carbon footprint Calculation Organization, Event and Product 13.45 - 14.30 Module 5: Carbon footprint Calculation Introduction to Quantification Method, Activity data, Emission Factor 14.30 – 14.45 Coffee Break 14.45 - 15.15 Module 6: Carbon footprint Calculation Scope 1, Scope 2 and Scope 3 identification 15.15 - 16.00 Exercise 1 Carbon Footprint Calculation 16.00 - 16.30 Discussion from the Exercise, Q&A Second Day 09.00 - 09.15 Review lesson from 1 st day 09.15 - 09.30 Module 7: Introduction to ISO14064 Series, ISO14064 1, ISO14064 2, ISO14064 3, ISO14067 9.30 - 10.00 Module 8: ISO 14064 1 10.00 - 10.30 Module 9: CFO standard 10.30 - 10.45咖啡休息10.45-12.00模块10:T VER标准12.00-13.00午餐13.00-13.45模块11:验证概念和技术简介13.45-14.30练习#2 GHG测验14.30-14.45练习16.00-16.30问答和总结
拟议的大规模制氢系统避免了海上平台、高压阵列间和输出电缆以及大型电力变压器。通过管道运输氢气的成本至少比通过金属电缆运输电力的成本低八倍(BD James 等人,2019 年)。
摘要。气体监测是理解地下环境中天然气的交换,扩散和迁移过程的先决条件,这与多种应用有关,例如CO 2的地质隔离。在这项研究中,将三种不同的技术(微型GC,红外和拉曼光谱镜)部署在一个实验性的钻孔上,以进行CO 2注射后的监测目的。的目的是开发一种实时化学监测装置,通过在井眼内的水中测量溶解的气体浓度,但也通过与井孔水平的平衡中的气体收集系统在表面上进行测量。但是,必须校准所有三种技术以提供最准确的定量数据。为此,实现了实验室中的第一个校准步骤。需要进行新的校准,以确定水中或气体收集系统中的气体浓度和/或浓度。用于气相分析,微型-GC,FTIR光谱和拉曼光谱法。对于CO 2,CH 4和N 2进行了Mi-CRO-GC的新校准,不确定性从±100 ppm到1.5 mol%,具体取决于散装浓度和气体类型。先前对CO 2和CO 2,N 2,O 2,CH 4和H 2 O校准了FTIR和RAMAN光谱仪,其精度为1 - 6%,具体取决于浓度尺度,气体和光谱仪。溶解的CO 2。预测溶解的CO 2浓度的不确定性分别为±0.003 mol kg 1和±0.05 bar。
* 通信地址:David R. Weise 美国农业部林务局,太平洋西南研究站,美国加利福尼亚州河滨市 92507 电子邮件:david.weise@usda.gov 成分数据技术。两者中 CO 2 占主导地位。其他主要气体包括 CO、H 2 和 CH 4 。不同火灾阶段(热解、火法燃烧)中 CO、CO 2 和 CH 4 的相对含量相似;在热解样品中观察到相对更多的 H 2 。热解样品中所有气体与 CO 2 的对数比都大于火法燃烧样品。活植物的存在显著影响气体成分。逻辑回归模型根据气体成分正确地将 76% 的风洞样品归类为热解或火法燃烧。该模型预测 60% 的火法样品来自热解。火灾位置(风洞、火法燃烧)和火灾阶段影响气体成分。组合方法能够分析和建模气体成分,产生与数据基本特征一致的结果。
与全球平均水平相比,北极扩增(AA)北极扩增物(AA)已广泛归因于温室气体浓度的增加(GHG)。 然而,对其他强迫的影响(值得注意的是人为气溶胶(AER))以及它们如何与温室气体的影响相比,知之甚少。 在这里,我们分析了气候模型模拟的集合,该集旨在隔离AER和GHG对全球气候的影响。 令人惊讶的是,我们发现AER生产的AA比1955年至1984年的GHG更强,当时全球AER最强的AE时。 这种更强的AER诱导的AA是由于北极海冰的敏感性较高,以及海洋到大气热交换的相关变化,与AER强迫相关的变化。 我们的发现突出了对温室气体和AER强迫的不对称气候反应,并表明减少气溶胶排放的清洁空气政策可能加剧了过去几十年来北极变暖。北极扩增物(AA)已广泛归因于温室气体浓度的增加(GHG)。然而,对其他强迫的影响(值得注意的是人为气溶胶(AER))以及它们如何与温室气体的影响相比,知之甚少。在这里,我们分析了气候模型模拟的集合,该集旨在隔离AER和GHG对全球气候的影响。令人惊讶的是,我们发现AER生产的AA比1955年至1984年的GHG更强,当时全球AER最强的AE时。这种更强的AER诱导的AA是由于北极海冰的敏感性较高,以及海洋到大气热交换的相关变化,与AER强迫相关的变化。我们的发现突出了对温室气体和AER强迫的不对称气候反应,并表明减少气溶胶排放的清洁空气政策可能加剧了过去几十年来北极变暖。
温室气体(GHG)的空气交换和海洋循环,包括二氧化碳(CO 2),一氧化二氮(N 2 O),甲烷(CH 4),一氧化碳(CO)和氧化碳(CO)和氧化氮(NOX¼NONO 2),在控制地球的进化方面是基于地球进化的基础。在过去的1个0年中,在理解,仪器和方法方面取得了重大进展,并破译了上海中温室气体的生产和消耗途径(包括地面和地下海洋至约1000 m)。现在,在当前条件下的全球海洋是CO 2的主要水槽,这是n 2 o的主要来源,也是CH 4和CO的次要来源。到目前为止,海洋作为水槽或NO X的重要性在很大程度上是未知的。仍然存在着很大的不确定性,并且对控制N 2 O,CH 4,CO 4,CO,CO,CO,CO,CO,x ins x of no and x of。没有对海洋温室气体生产和消费途径的基本了解,我们对持续的大海变化的影响(暖水,酸化,脱氧和富营养化)在海洋循环和温室气体交换中的效果至高无上。我们建议只有通过全面,协调和跨学科的方法,包括全球观察网络收集数据以及联合过程研究,才能生成必要的数据,以确定(1)确定相关的微生物和植物群社区,(2)量化海洋温室气体生产和消费途径的速率,(3)对他们的主要驱动程序和(3)的经济求解和(4)cistip and(4)cistriptions and Curtiquilition and Curtiptiral and Curtipertions and Curtiptrion and Curtipertions and Curtiptiral and Curtiptiral and Curtine and Curtine and Curtiptiral and Curtiment。
在线定量分析工业生产中的反应气体或排气性非常重要,可以提高生产能力和过程。使用定量数学模型与机器学习的线性回归算法相结合,开发了一种用于在线定量分析反应气或排气的方法。准确地估算了反应气体或排气中的组分气体及其含量后,构建了比率矩阵以分离相关的重叠峰。通过在线工艺质谱仪纠正比率矩阵并获得相对灵敏度矩阵,检测到,过滤,归一化和线性回归的比率和校准标准气体。可以建立一个定量的数学模型,以实时获得反应气体或排气的每个组件的含量。该方法的最大定量误差和该方法的相对标准偏差在0.3%和1%以内,在在线量化代表性酵母发酵罐尾气之后。
我们报告了金纳米粒子 (AuNP) 修饰的石墨烯-硅肖特基势垒二极管的电流-电压特性和低频噪声的结果。测量在环境空气中添加两种有机蒸气四氢呋喃 [(CH 2 ) 4 O; THF] 和氯仿 (CHCl 3 ) 中的任一种进行,以及在黄光照射 (592 nm) 期间进行,接近测量的金纳米粒子层的粒子等离子体极化频率。当加入四氢呋喃蒸气时(在金修饰的石墨烯-硅肖特基二极管中),我们观察到正向电压 (正向电阻区域) 的直流特性发生变化,而当添加氯仿时(在未修饰的石墨烯-硅肖特基二极管中),在黄光照射下会发生微小的变化。与无照射相比,在黄光照射期间观察到两种气体的低频噪声差异明显较大。与没有 AuNP 层的石墨烯-Si 肖特基二极管相比,AuNP 抑制了噪声强度。我们得出结论,所研究的金装饰肖特基二极管产生的闪烁噪声可用于气体检测。
最近,已经调用了理论计算的密度功能理论(DFT)方法,以检查和预测所研究材料的特性。16,17这种方法是当今科学界社区中的一种重要方法,它可以帮助确定是否可以考虑使用纳米材料进行感应应用。18 dft方法也可以采用对气体传感器材料的深入了解,以了解材料的分子电子和结构性能,机械行为,电导率和敏感性,以检测和识别诸如Ash 3,NH 3,NH 3,pH 3的危险气体。19 - 21 Arsine(Ash 3),氨(NH 3)和诗Phine(pH 3)是有毒的无色氢化物气,刺激了刺激性。22,23它们是高度刺激的气体,也是
必须注意,FSD根据《危险货物条例》(Cap。295)不放弃申请人的义务,根据拟议的特殊天然气的储存和使用,根据其他法律和法规要求获得其他政府部门或机构的任何事先同意,批准,许可或许可证。这些部门或机构可能包括但不限于建筑部,海关和消费税部,电气和机械服务部,环境保护部,医院管理局,投资香港(Investhk),土地部,规划部,运输部和劳工部。此外,申请或授予 /更新许可 /批准的处理不得放弃政府或任何公职人员授予的任何租赁或许可中的任何条款。他们也不会以任何方式影响或修改与许可 /批准相关的任何房屋或建筑物有关的任何协议或盟约。
