摘要:作为一种重要的非常规天然气资源,中国的煤层甲烷资源仅在Qinshui盆地和Ordos等几个地区进行商业开发。煤层甲烷生物工程的兴起使通过微生物作用和碳循环实现二氧化碳的转化和利用。根据地下微生物群落的代谢行为,如果修改了煤储层,则可能会刺激微生物ISM连续产生生物甲烷以延长耗尽煤层甲烷井的生产寿命。本文系统地讨论了通过营养物质(微生物刺激)促进微生物代谢的微生物反应,引入外源微生物或原位微生物(微生物增强)的驯化,预处理煤炭或化学特性以改善其物理特性,以改善生物利益环境和改善环境条件。但是,在商业化之前必须解决许多问题。整个煤炭储层被视为巨型厌氧发酵系统。在实施煤层甲烷生物工程时仍需要解决一些问题。首先,应阐明甲烷化微生物的代谢机制。其次,迫切需要研究煤接缝中高耐用水解细菌和养分溶液的优化。最后,必须改善对地下微生物群落生态系统和生物地球化学周期机制的研究。该研究为非常规天然气资源的可持续发展提供了一种独特的理论。此外,它为实现煤层甲烷储层中的二氧化碳再利用和碳元素周期提供了科学基础。
技术模型的开发是为20种情况中的每一种都产生通用的质量平衡。质量平衡的产出已在成本模型中用于评估运营成本和生产率。使用技术供应商提供的信息以及Fichtner和AECOM可用的内部数据估算了资本成本。必须理解,迄今为止,很少有AGT构造,除了一种植物外,迄今为止,所有示威者的工厂都比本报告中研究的尺寸小。因此,资本成本估算可能会发生很大差异,这是通过不同资本成本来模拟的,以表明其对产品成本的敏感性。的运营成本是由供应商信息的组合,来自大量余额模型的消耗品和残留物的数据以及类似废物和生物量流程的经验而建立的。
工作计划•调查基于成像和非成像光谱的实时材料属性测量工具的当前技术。•测试低成本系统可行的关键假设,并确定需要技术开发的特定领域。
• 转化器干燥废物并驱除挥发物 • 当废物沿着炉排向下移动时,热气体注入其中 • 固体被气化并从上方排出 • 剩余的炭落到第二阶段 • 移动炉排在焚烧炉中很常见,具有经过验证的强大性能
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
研究了生物质与氧化铁的太阳能气化,用于合成气和铁的生产。太阳能和生物质都是很有前途的可再生能源。气化过程将固体碳质原料转化为燃料或化学品。然而,传统工艺需要原料的部分燃烧来供应能量,并且由于燃烧产物的稀释,固有的氧气生产成本高,合成气热值低。使用固体氧化物的化学循环气化是解决这些问题的另一种选择。通过提供集中的太阳能作为高温热源,可以从该过程中生产出更多的合成气,同时能够将太阳能储存成可调度的燃料。这项工作提出探索在高加热速率下在氧化铁上进行太阳能生物质气化,这代表了太阳能反应器中获得的条件。计算了 100 至 1,500 ◦ C 之间气化反应的热力学平衡,并报告了使用专门设计的感应炉在 1,100 ◦ C 下以氧化铁、水或二氧化碳作为氧化剂进行生物质气化的实验结果。固体产物分析表明,氧化铁可以根据氧载体的比例还原为金属铁。这些结果表明,氧化铁是一种有效的太阳能生物质气化材料,可通过一种新颖的绿色冶金工艺同时生产合成气和铁。
摘要进行研究的目的是隔离,识别和表征来自UCG废水的合适细菌菌株,作为生物学方法的潜在候选者。为此,采用了直接的培养程序和独特的生化选择来洞悉细菌的特定特性。从UCG废水分离的100个菌株中,三个(Paenibacillus pasadensis Safn-007,Peanibacillus humicus au34和葡萄球菌Warneri DK131)证明了降级酚和特定生物化学特性的能力。苯酚降解的上述菌株达到了90%以上,而其他选定菌株的AV ERAGE苯酚去除率为82.9%,范围从66.1%到90%。细菌菌株属于多酶产生者,并构成了潜在技术重要的EN酶的可能来源。表型微阵列板用于表征菌株的代谢特性。发现,测试的碳代谢物的74%,67.4%和94.2%被Paenibacillus pasadensis safn-007,Peanibacillus humicus au34和葡萄球菌华纳里葡萄球菌DK131使用。Among C sources, the strains have the capability to metabolize some substrates appearing in phenol pathways, such as: N-acetyl-D-glucosamine, succinic acid, α-hydroxy-glutaric acid-γ-lactone, bromosuccinic acid, mono-methyl succinate, methyl-pyruvate, p-hydroxy-phenyl acetic acid, M-羟苯基乙酸,L-半乳酸 - γ-乳酮,D-半乳酸-γ-内酯,苯乙胺。细菌显示出对pH和渗透压的耐受程度不同,它们可以在不同的栖息地中繁衍生息。这些菌株的另一个特征是它们对许多抗生素(多耐药细菌)的高抗性。这些特性允许将孤立的细菌菌株用作苯酚受污染环境的生物修复的良好候选物。地下煤气化过程中的废水是一个很好的极端环境,可以隔离具有特定代谢特性的独特细菌。
Hydrocarbon based 1) Steam Methane Reforming (NG SMR): w CCS & w/o CCS 2) SMR using Landfill Gas as feedstock (LFG-SMR) 3) Autothermal Reforming (NG ATR): using NG & using LFG 4) Methane Pyrolysis: using NG & using LFG 5) Coal Gasification: w CCS & w/o CCS 6) Biomass Gasification 7)NGL蒸汽破裂8)PET可口可乐9)深色发酵和MEC 10)基于Coke烤箱气体电解1)使用PEM的低温电解使用PEM 2)使用SOEC使用SOEC 3)电解HTGR 4)水的热化学孔副异型范围h 2