1DeFísica研究所,里约热内卢联邦大学,P。O. Box 68528, Rio de Janeiro 21941-972, Brazil 2 ICFO-Institut de Ciencies Photoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain 3 Departament de Física, Universidad de Concepción, Concepción 160-C, Chile 4, Chile 4 Anid-Millennium Science Iniative Program Millennium Opitics研究所,DeConcepción大学,Concepción,Concepción160-C,智利5 Depranciment deIngenieríaEléctric,Catulica de la laSantísimaConcepción,Alonso de ribera de Ribera 2850,concepcioun,Chilepción日内瓦大学应用物理学,日内瓦大学1211,瑞士7大学。 Grenoble Alpes,Inria,Grenoble 3800,法国8量子光学和量子信息研究所(IQOQI),奥地利科学学院,Boltzmanngasse 3,维也纳1090,奥地利,奥地利9 Univ Grenoble Alpes,CNRS,Grenoble INP,InstitutNél,Grenoble 38000,法国10量子研究中心,技术创新研究所,阿布扎比,阿拉伯联合酋长国,阿拉伯联合酋长国1DeFísica研究所,里约热内卢联邦大学,P。O.Box 68528, Rio de Janeiro 21941-972, Brazil 2 ICFO-Institut de Ciencies Photoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain 3 Departament de Física, Universidad de Concepción, Concepción 160-C, Chile 4, Chile 4 Anid-Millennium Science Iniative Program Millennium Opitics研究所,DeConcepción大学,Concepción,Concepción160-C,智利5 Depranciment deIngenieríaEléctric,Catulica de la laSantísimaConcepción,Alonso de ribera de Ribera 2850,concepcioun,Chilepción日内瓦大学应用物理学,日内瓦大学1211,瑞士7大学。 Grenoble Alpes,Inria,Grenoble 3800,法国8量子光学和量子信息研究所(IQOQI),奥地利科学学院,Boltzmanngasse 3,维也纳1090,奥地利,奥地利9 Univ Grenoble Alpes,CNRS,Grenoble INP,InstitutNél,Grenoble 38000,法国10量子研究中心,技术创新研究所,阿布扎比,阿拉伯联合酋长国,阿拉伯联合酋长国Box 68528, Rio de Janeiro 21941-972, Brazil 2 ICFO-Institut de Ciencies Photoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain 3 Departament de Física, Universidad de Concepción, Concepción 160-C, Chile 4, Chile 4 Anid-Millennium Science Iniative Program Millennium Opitics研究所,DeConcepción大学,Concepción,Concepción160-C,智利5 Depranciment deIngenieríaEléctric,Catulica de la laSantísimaConcepción,Alonso de ribera de Ribera 2850,concepcioun,Chilepción日内瓦大学应用物理学,日内瓦大学1211,瑞士7大学。Grenoble Alpes,Inria,Grenoble 3800,法国8量子光学和量子信息研究所(IQOQI),奥地利科学学院,Boltzmanngasse 3,维也纳1090,奥地利,奥地利9 UnivGrenoble Alpes,CNRS,Grenoble INP,InstitutNél,Grenoble 38000,法国10量子研究中心,技术创新研究所,阿布扎比,阿拉伯联合酋长国,阿拉伯联合酋长国
认识到宠物也是家庭,我们开发了MypetQR,为宠物主提供了一种可靠的工具来管理宠物的病历。此移动应用程序使您可以随身携带宠物的健康信息,包括免疫,过敏,治疗和当前药物,无论您走到哪里。
我们提出了新方法,用于精确合成具有高成功概率和门保真度的单量子比特幺正,同时考虑了时间箱和频率箱编码。所提出的方案可通过光谱线性光学量子计算 (S-LOQC) 平台进行实验,该平台由电光相位调制器和相位可编程滤波器(脉冲整形器)组成。我们评估了两种编码中任意门生成的两种最简单的 3 组分配置的保真度和概率性能,并使用单音射频 (RF) 驱动 EOM,为时间箱编码中任意单量子比特幺正的合成提供了精确的解析解。我们进一步研究了使用紧凑实验装置在多个量子比特上并行化任意单量子比特门,包括光谱和时间编码。我们系统地评估和讨论了 RF 带宽(决定驱动调制器的音调数量)以及不同目标门的编码选择的影响。此外,我们还量化了在实际系统中驱动 RF 音调时,可以并行合成的高保真 Hadamard 门的数量,且所需资源最少且不断增加。我们的分析将光谱 S-LOQC 定位为一个有前途的平台,可进行大规模并行单量子位操作,并可能应用于量子计量和量子断层扫描。
目前,自动收费站 (ATG) 中的一种电子收费 (ETC) 方法是使用射频识别 (RFID) 技术的非接触式交易。使用 RFID 跟踪和监控物体(汽车)是实时进行的,并且需要跟上物体(汽车)的速度。安装在汽车挡风玻璃上的车载单元 (OBU) 应答器和安装在 ATG 上的路侧单元 (RSU) 是专用短程通信 (DSRC) 系统的主要组成部分,该系统允许汽车和 ATG 相互通信并进行交易,包括在线支付通行费,而无需接触。进行这项研究的动机是通过比较汽车中的 OBU 和自动收费站的 RSU 之间的通信范围以及 OBU 中的电池电量来确定采用非接触式卡支付的自动收费站的功率和等待时间效率。此外,本研究旨在确定仍接触支付卡的 ETC 系统与不接触支付卡(非接触式)且已使用 RFID 技术的 ETC 系统之间的响应时间差异。据估计,与不接触支付卡且已使用 RFID 技术的 ETC 系统相比,仍接触支付卡的 ETC 系统的响应时间更长。本研究使用的方法是设计和制作 OBU 和 RSU 的原型,然后模拟和测量安装在汽车上的 OBU 的范围和响应时间,RSU 安装在 ATG 上。
本文深入探讨了盖茨基金会的开放访问(OA)政策旅程,因为2025年标志着基金会的OA政策十年。该政策已经进行了两次迭代 - 2015年启动的原始版本侧重于黄金OA,然后在2021年对其进行了改编,以反映计划的原则,包括基于期刊类型和存储库存款的发布者付款的限制。现在,为了应对学术生态系统的不断变化的需求,基金会正在再次更新其政策,以努力追求更广泛的影响,并支持推动全球科学家,尤其是来自低收入国家和中等收入国家的科学家的实践。本文将深入研究用于定义基金会资助的研究的更公平方法的决策和数据。
尽管取得了这些进展,但抗击疟疾的进展却停滞不前,2022 年新增病例数与 2021 年相比增加了 500 万例。一系列因素包括:蚊子对最常见杀虫剂的抗药性、寄生虫对青蒿素类联合疗法(目前最好的药物)的抗药性、气候变化影响疟蚊的传播以及蚊子叮咬行为的改变。世卫组织指出,继续投资开发和部署新型疟疾疫苗和下一代工具将是实现 2030 年全球疟疾目标的关键。
摘要 目前缺乏针对出生后早期生活的前瞻性纵向研究,这些研究描绘了早期逆境背景下早期处理和大脑特化的发育路径。从婴儿期到 1-5 岁年龄段的跟踪是关键,因为它构成了婴儿研究和早期儿童研究之间的一个关键差距。便携式神经影像学(功能性近红外光谱 (fNIRS) 和脑电图 (EEG))的普及使我们能够进入农村环境,增加了我们的采样多样性,并扩大了发展研究的范围,将以前代表性不足的低收入和中等收入国家 (LMIC) 的种族和地理群体纳入其中。全球健康脑成像 (BRIGHT) 项目的主要目标是使用来自英国和冈比亚农村地区的母亲-年龄参考曲线婴儿二元组的纵向数据建立大脑功能,并研究与环境相关的调节因素与生命头两年的发展轨迹之间的关联。
Skyrmion 是凝聚态中拓扑稳定的结构,具有粒子状特性。自 2009 年发现以来 [1],它们在自旋电子学领域引起了广泛关注,尤其在存储设备和逻辑运算中具有潜在应用价值。随着实验技术的进步,Skyrmion 的尺寸已经可以小到只有几个晶格常数。这引起了人们对从量子力学角度研究其特性的兴趣,进而促成了 Skyrmion 量子比特的提出 [2]。在反演对称磁体中,Skyrmion 表现出有趣的特性,可能适用于量子计算应用 [3]。在哈密顿层面,Skyrmion 可以被设计成与现有的超导量子比特(如 transmon 和 flux 量子比特)相似。受这些相似之处的启发,我们探索了当 Skyrmion 配置在所谓的 transmon 状态时可能意味着什么。超导 transmon 量子比特具有增强的抗噪性和可控性,彻底改变了量子计算领域。因此,很自然地,我们会问 Skyrmion 量子比特是否可以实现类似的改进,因为它们是完全不同的物理实体。我们研究了两种可能的 Skyrmion 量子比特类型:S ˆ z 量子比特和螺旋性量子比特,它们取决于底层材料的特性。我们讨论了量子 Skyrmions 的量化过程以及这两种量子比特类型如何从集体坐标量化中产生。这引出了我们最终用来描述材料和仪器参数方面不同量子比特配置的一般哈密顿量。我们从非谐性和耦合强度等常见度量的角度讨论这些配置,以展示未来 Skyrmion 量子比特的机遇和挑战。此外,与通常实现的动态门不同,我们探索了这些系统中几何和完整量子门的潜力。为了实现这样的门,必须将量子比特设计成三级系统(即 Λ 系统),而这在 Skyrmion 量子比特的背景下尚未被探索过。我们阐述了如何创建这样的系统,并模拟了单个量子比特门来确认结果。最后,我们阐述了如何使用这些方法实现通用门集,并讨论了当前为实现 Skyrmion 量子比特的可扩展量子平台所做的努力。
我们也知道,我们和整个 NHS 都面临着挑战。重点是关注财务可持续性和提高生产力。我们已经在与员工合作,寻找方法利用今年在降低空缺率和治疗更多患者方面取得的优异成绩。提高流程效率、减少浪费和尽量减少临时员工的使用,同时保护和加强员工和患者安全将是我们真正关注的重点。