本文深入探讨了盖茨基金会的开放访问(OA)政策旅程,因为2025年标志着基金会的OA政策十年。该政策已经进行了两次迭代 - 2015年启动的原始版本侧重于黄金OA,然后在2021年对其进行了改编,以反映计划的原则,包括基于期刊类型和存储库存款的发布者付款的限制。现在,为了应对学术生态系统的不断变化的需求,基金会正在再次更新其政策,以努力追求更广泛的影响,并支持推动全球科学家,尤其是来自低收入国家和中等收入国家的科学家的实践。本文将深入研究用于定义基金会资助的研究的更公平方法的决策和数据。
量子计算理论中的一个基本问题是了解执行一组通用逻辑量子门以达到任意精度的最终时空资源成本。在这里,我们证明 Turaev-Viro 量子纠错码中的非阿贝尔任意子可以通过恒定深度局部酉量子电路移动代码距离的量级,然后进行量子比特排列。我们的门受到保护,因为错误字符串的长度不会增加超过一个常数倍。当应用于斐波那契码时,我们的结果表明,可以通过恒定深度酉量子电路在编码量子比特上实现通用逻辑门集,而不会增加空间开销的渐近缩放。这些结果也直接适用于表面代码中拓扑缺陷的编织。我们的结果将编织的概念重新表述为一个有效的瞬时过程,而不是一个绝热的缓慢过程。
摘要 先前的工作提供了将酉矩阵分解为一系列量子多路复用器的方法,但以这种方式创建的多路复用器电路可能高度非最小。本文提出了一种优化具有任意单量子比特量子目标函数和三元控制的量子多路复用器的新方法。对于多值量子多路复用器,我们定义了标准形式和两种新形式:固定极性量子形式(FPQF)和克罗内克量子形式(KQF)。从蝴蝶图的使用中获得灵感,我们设计了一种详尽构建新形式的方法。与以前使用经典布尔函数的基于蝴蝶的方法相比,这些新形式用于优化具有任意目标酉矩阵的量子电路。将新形式应用于各种目标门(如NOT、V、V +、Hadamard和Pauli旋转)的实验结果表明,这些新形式大大降低了三元量子多路复用器的门成本。
目前,自动收费站 (ATG) 中的一种电子收费 (ETC) 方法是使用射频识别 (RFID) 技术的非接触式交易。使用 RFID 跟踪和监控物体(汽车)是实时进行的,并且需要跟上物体(汽车)的速度。安装在汽车挡风玻璃上的车载单元 (OBU) 应答器和安装在 ATG 上的路侧单元 (RSU) 是专用短程通信 (DSRC) 系统的主要组成部分,该系统允许汽车和 ATG 相互通信并进行交易,包括在线支付通行费,而无需接触。进行这项研究的动机是通过比较汽车中的 OBU 和自动收费站的 RSU 之间的通信范围以及 OBU 中的电池电量来确定采用非接触式卡支付的自动收费站的功率和等待时间效率。此外,本研究旨在确定仍接触支付卡的 ETC 系统与不接触支付卡(非接触式)且已使用 RFID 技术的 ETC 系统之间的响应时间差异。据估计,与不接触支付卡且已使用 RFID 技术的 ETC 系统相比,仍接触支付卡的 ETC 系统的响应时间更长。本研究使用的方法是设计和制作 OBU 和 RSU 的原型,然后模拟和测量安装在汽车上的 OBU 的范围和响应时间,RSU 安装在 ATG 上。
相关标准 . . . . . . . . . . . . . . . . . 初始屏障设计 . . . . . . . . . . . . . . . 链环栅栏 . . . . . . . . . . . . . . . 柱子和支撑 . . . . . . . . . . . . . . 链环栅栏织物 . . . . . . . . . . . . . 支腿 . . . . . . . . . . . . . . . 配件 . . . . . . . . . . . . . . . . 安装要求. . . . . . . . 栅栏放置. . . . . . . . . . . . 立柱、顶部横杆和支撑. . . . . . . . . 链环栅栏织物安装. . . . . . . . . . . . 支腿. . . . . . . . . . . . . 配件. . . . . . . . . . . . . 特殊安全功能. . . . . . . . . . 清理区域. . . . . . . . . 巡逻道路. . . . . . . . . 标志. . . . . . . . . . 排水涵洞和公用设施开口. . . . 排水交叉口. . . . . . . . . . . 隧道施工. . . . . . . . . . . 维护注意事项. . . . . . . . . . . . . 侵蚀控制. . . . . . . . . . . . . . . . . 接地. . . . . . . . . . . . . . . . .
尽管取得了这些进展,但抗击疟疾的进展却停滞不前,2022 年新增病例数与 2021 年相比增加了 500 万例。一系列因素包括:蚊子对最常见杀虫剂的抗药性、寄生虫对青蒿素类联合疗法(目前最好的药物)的抗药性、气候变化影响疟蚊的传播以及蚊子叮咬行为的改变。世卫组织指出,继续投资开发和部署新型疟疾疫苗和下一代工具将是实现 2030 年全球疟疾目标的关键。
绝热捷径是加速绝热量子协议的通用方法,在量子信息处理中具有许多潜在应用。不幸的是,对于具有复杂相互作用和多个能级的系统,通过分析构建绝热捷径是一项具有挑战性的任务。这通常通过假设理想化的汉密尔顿量来克服[例如,仅保留有限的能级子集,并进行旋转波近似(RWA)]。在这里,我们开发了一种分析方法,可以让人们超越这些限制。我们的方法是通用的,可以分析得出的脉冲形状可以纠正非绝热误差和非 RWA 误差。我们还表明,与传统的非绝热协议相比,我们的方法可以产生需要更小驱动功率的脉冲。我们详细展示了如何利用我们的想法在现实的超导通量子比特中分析设计高保真单量子比特“三脚架”门。
在介绍参考帧纠错任务 [ 1 ] 之后,我们展示如何通过使用参考帧与时钟对齐,将一组连续的阿贝尔横向逻辑门添加到任何纠错码中。据此,我们进一步探索一种绕过 Eastin 和 Knill 的无行定理的方法,该定理指出,如果局部错误是可校正的,则横向门组必须是有限阶的。我们可以通过在解码过程中引入一个小错误来做到这一点,该错误随着所用帧的维数而减小。此外,我们表明,这个误差有多小与量子钟的精确度之间存在直接关系:时钟越精确,误差越小;如果时间可以在量子力学中完美测量,则会违反无行定理。在多种参考系和误差模型的场景下研究了误差的渐近缩放。该方案还扩展到未知位置的误差,我们展示了如何通过参考系上的简单多数投票相关误差校正方案来实现这一点。在展望中,我们讨论了与 AdS/CFT 对应和 Page-Wooters 机制相关的结果。
Equal Employment Office 846-5369 Family Advocacy 846-0139 Financial Management 853-1640 Flight Center/Aero Club 846-1072 Flower Shop 255-4335 Food Court 268-1167 Gates: Carlisle 846-8474 Gates: Eubank 846-6231 Gates: Gibson 846-7240 Gates: South Valley 853-5623 Gates: Maxwell 846-7491 Gates: Truman 846-7509 Gates: Wyoming 846-7773 General Delivery 846-7718 GNC 255-4193 Golf Course 846-1169 Health Benefits 846-3335 Health Benefits Advisor 846-3336 Health and Wellness Center 846-1186 Housing Management 846-8217 Information, Tickets and Travel 846-2924 Installation Voting Assistance Office 846-8683 Jitter Coffee Shop 853-3223 Kirtland Family Housing 232-2049 Kirtland Inn Lodging 846-9653 Kirtland School Liaison Officer 846-6477 Maxwell Housing 255-1188 McDonalds 255-5363 Medical Appointments 846-3200医疗信息线846-3395山景俱乐部846-5165户外娱乐846-1499
抽象的门级设计和电路模拟是构建复杂数字电路的基本过程。本文着重于两个通用数字逻辑门的设计和电路模拟。NAND和NOR GATES使用Cadence Virtuoso软件。研究利用了在每个逻辑门上进行的瞬态分析的多功能环境,以模拟对输入脉冲信号的输出响应。将模拟的结果绘制为瞬态图,以正确地可视化门操作。模拟结果表明,NAND和NOT门都经过了适当的操作,这通过其真实表得到了进一步验证。当两个输入信号都高时,NAND门仅产生低输出信号。当所有输入信号都较低时,NOR GATE才会产生一个很高的输出信号。通过严格的模拟和细致的分析,这项研究发现了这些逻辑门的动态行为,从而阐明了它们的功能和性能特征。1。简介