为了使您快速前进,我们在Stemma Qt form form(https://adafru.it/lbq)中启动了定制的PCB,使其易于与之接口。两侧的Stemma Qt连接器(https://adafru.it/jqb)与SparkFun Qwiic(https://adafru.it.it/fpw)I2C连接器兼容。这使您可以在开发板和Max17048之间建立无焊接连接,或使用兼容的电缆(https:// adafru.it/jnb)与其他各种其他传感器和配件链接。不包括QT电缆,但我们在商店中有多种多样(https:// adafru.it.it/17ve)
在两个空间维度中开发了非Fermi液体(NFL)的预测理论仍然是现代冷凝物理物理学的关键挑战。在真实材料的水平上,它可以洞悉诸如高-T_C超导性等紧迫问题,而从抽象的角度来看,它是对较低的2-D临界值的范式的范式,这是由于与有限密度的Fermions相互作用而引起的2-D关键性。功能性重新归一化组特别适合研究NFL,因为它可以处理其固有的强相互作用和非分析的算子[1,2] - 但是,由于准粒子图片的细分,人们对低能量现场理论的形式鲜为人知,而大多数理论方法的形式缺乏预测能力。我们试图通过使用已知的确切身份(例如由对称性的身份)来限制建模来解决此问题。具体而言,我们非扰动地研究了与2-D Fermi-surface相互作用的U(1)仪表的问题;早就知道,磁性矢量电势不会被颗粒孔连续体筛选,因此诱导了关键性[3,4]。我们首先展示了调节器与U(1)对称性的相互作用如何 - 特别是为了正确捕获Landau阻尼,我们需要一个软频率调节器来构成费米子,这破坏了仪表对称性并导致修改后的病房身份。这些身份虽然不及标准病房身份,但仍然提供耦合之间的确切关系并限制流量。[1] S. A. Maier和P. Strack,物理。修订版mod。物理。reizer,物理。我们讨论了该模型托管的NFL固定点,并演示了修改后的病房身份的合并如何影响其特性。我们对低能量物理诱导的UV-IR混合进行了一些评论,并通过规格对称性诱导的uv-ir混合,以及我们的结果对非Fermi液体的预测建模的含义。b 93,165114(2016)[2]84,299(2012)[3] M. Yu。 修订版 b 40,11571(1989)[4] S. Chakravarty,R。E。Norton和O. F.Syljuåsen,物理学。 修订版 Lett。 74,1423(1995)84,299(2012)[3] M. Yu。修订版b 40,11571(1989)[4] S. Chakravarty,R。E。Norton和O. F.Syljuåsen,物理学。修订版Lett。 74,1423(1995)Lett。74,1423(1995)
在阳米尔斯仪表上的欧几里得凯奇表面表面表面含有直接经验意义的仪表对称性组通常被认为是g des = g des = g i /g∞0,其中g i是一个具有边界的符号对称性和g∞0是其由构成理论构成的构成的构成的转化。这些群体分别被识别为渐近变化的仪表变换,以及渐近身份的量规变换。在Abelian案例中G = U(1)然后将其标识为全球仪表对称组,即u(1)本身。然而,在数学上还是概念上,这一说法的已知派生都是不精确的。我们针对阿贝里安和非亚伯仪理论严格得出了物理量规组。我们的主要新观点是,限制g i的要求不仅源于能量的有限,而要依赖于Yang-Mills理论的Lagrangian的要求,以在切实的捆绑包上定义以配置空间。此外,我们解释了为什么商恰好由每个同型类别的全球仪表组的副本组成,即使各种规范变换显然具有不同的渐近速率收敛速率。最后,我们在框架中考虑了Yang-Mills-Higgs理论,并表明渐近边界条件在不间断和破碎的相处有所不同。1
• 高度集成的电池组管理器,适用于 3 至 16 节串联电池应用 – 超低功耗 32 位 RISC 处理器 – 最多可对 16 节串联电池进行 ADC 测量,容差为 80V – 高精度 SoC 和 SoH,具有动态 Z Track ™ 测量算法 – 基于证书的安全保护闪存 • 带有两个独立 ADC 的精密模拟前端: – 高精度 18 位积分 delta-sigma 库仑计数器 – 带有输入转换和多路复用器的高精度 16 位 delta-sigma – 支持同时进行电流和电压采样 – 支持最多八个外部热敏电阻测量和一个内部温度传感器 • 强大的高端 NMOS FET 驱动器,具有快速开启和关闭时间 • 电荷泵支持预充电和预放电 NMOS FET 驱动器 • 并联配置支持可拆卸电池,带有独立的充电器和系统端口 • 电池平衡支持每节电池高达 50mA 的旁路电流 • 诊断寿命数据监视器和记录器 • 多主机通信支持:– I 2 C(高达 1MHz) – SMBus 3.2(高达 1MHz)• 多种电源模式,实现低静态电流运行• SHA-1、SHA-2 或 EC-KCDSA 身份验证,确保电池组安全
核物理和高能物理的一个关键目标是从粒子物理的标准模型出发,描述物质的非平衡动力学,例如在早期宇宙和粒子对撞机中。通过格点规范理论框架,经典计算方法在这一任务中取得了有限的成功。格点规范理论的量子模拟有望克服计算限制。由于局部约束(高斯定律),格点规范理论具有复杂的希尔伯特空间结构。这种结构使平衡和非平衡过程中与储层耦合的系统的热力学性质的定义变得复杂。我们展示了如何使用强耦合热力学来定义功和热等热力学量,强耦合热力学是最近在量子热力学领域蓬勃发展的框架。我们的定义适用于瞬时淬灭,即在量子模拟器中进行的简单非平衡过程。为了说明我们的框架,我们计算了在与 1 + 1 维物质耦合的 Z 2 格子规范理论中淬灭期间交换的功和热。作为淬灭参数的函数,热力学量证明了相变。对于一般的热状态,我们推导出量子多体系统的纠缠汉密尔顿量(可用量子信息处理工具测量)与平均力的汉密尔顿量(用于定义强耦合热力学量)之间的简单关系。
BQ3060在从Ti发货之前校准用于电压。将为每个单元校准BQ3060电压测量信号链(ADC,高压翻译,电路互连)。从每个单元连接到BQ3060的VCX输入的外部过滤器电阻必须为1KΩ。在4V电池电压下,在室温下,工厂校准设备的精度为+/- 10mV。没有任何客户电压校准,只要过滤器电阻值为1kΩ,这就是预期的准确度。如果需要更好的电压精度,则需要客户电压校准。有关校准和编程的应用程序说明BQ3060在产品Web文件夹中可用。有关更多详细信息,请参见数据闪存编程和校准BQ3060加油表(SLUA502)。
我们研究了与动态自旋 1 2 链耦合的 1D Z 2 格子规范理论的量子多体疤痕中的介子激发(粒子-反粒子束缚态),该链作为物质场。通过引入物理希尔伯特空间的弦表示,我们将疤痕态 j Ψ n;li 表示为所有具有相同弦数 n 和总长度 l 的弦基的叠加。对于小 l 疤痕态 j Ψ n;li,物质场的规范不变自旋交换关联函数随着距离的增加呈指数衰减,表明存在稳定的介子。然而,对于大的 l ,关联函数呈现幂律衰减,表示非介子激发的出现。此外,我们表明这种介子-非介子交叉可以通过淬灭动力学检测到,分别从两个低纠缠初始态开始,这在量子模拟器中是实验可行的。我们的研究结果扩展了格点规范理论中量子多体疤痕的物理学,并揭示了非介子态也可以表现出遍历性破坏。
图1-1的数字列表。MSPM0 Gauge Hardware Board............................................................................................................................... 2 Figure 1-2.MSPM0 Gauge Software Project.............................................................................................................................. 3 Figure 1-3.MSPM0 Gauge GUI Project...................................................................................................................................... 3 Figure 2-1.MSPM0仪表板框图........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 4图2-2。Gauge Board Instructions.......................................................................................................................................... 4 Figure 3-1.MSPM0 Gauge Software Project View...................................................................................................................... 5 Figure 3-2.Battery Model and SoC-OCV Table........................................................................................................................... 5 Figure 3-3.VGauge Software Flow............................................................................................................................................. 6 Figure 3-4.MCU COM Tool functions.......................................................................................................................................... 7 Figure 3-5.SM COM Tool function.............................................................................................................................................. 7 Figure 4-1.Pulse Discharge Test Case....................................................................................................................................... 9 Figure 4-2.Hardware Structure to Get Battery Model................................................................................................................. 9 Figure 4-3.Battery Circuit Table Generation............................................................................................................................. 10 Figure 4-4.Battery Circuit Table Input....................................................................................................................................... 10 Figure 4-5. tBattParamsConfig Structure................................................................................................................................... 11 Figure 4-6.Gauge Mode Setting............................................................................................................................................... 12 Figure 4-7.Detection Data Input Mode Structure...................................................................................................................... 12 Figure 4-8.Flash Data Input Mode Structure............................................................................................................................ 12 Figure 4-9.Battery Runfile Generation...................................................................................................................................... 13 Figure 4-10.Battery Runfile Copy............................................................................................................................................. 13 Figure 4-11.Code Change for Changing Time Step.................................................................................................................. 13 Figure 4-12.通信数据输入模式结构........................................................................................................................................................................................................................................................................................................................................................... 14图4-13。Communication Data Input.................................................................................................................................... 14
具有空间规则化的电容式微重力流体质量计是一种可安装在推进剂容器上的传感器,可以以可确定的精度确定容器体积内的液体和气体的质量。该传感器由 1) 安装在容器壁内表面上的多个离散电极、2) 信号生成、数字化、信号调节和一般支持(例如电源)电子设备、3) 电极和电子设备之间的电连接以及 4) 用于将一组电容测量值(即电容矩阵)转换为体积分数的算法组成。电子设备生成正弦波并将其施加到单个电极上,然后电子设备测量所有其他电极上的电荷。电容只是电荷除以电压。对所有电极重复此操作,无需重复。对于具有固定体积的容器,只要知道流体成分、温度和压力,就可以使用理想气体定律将体积分数转换为质量分数。