能够评估结构在受到尖峰态随机激励的情况下的疲劳寿命的主要好处之一是创建加速测试定义。这个想法是将特定的峰度值与给定的功率谱密度 (PSD) 相关联,以减少暴露时间,同时包含与原始稳态和高斯随机测试相同的疲劳损伤潜力。在实践中,工程师将能够模拟某些商用振动控制系统的峰度控制能力对被测设备所经历的疲劳损伤的影响。此过程将使用基于 FE 的疲劳分析工具实现,其中用户指定激励 PSD、峰度值和 FE 结果文件,该文件表示将激励与测试物品的 FE 模型的每个节点或元素处的应力响应联系起来的频率响应函数。获得应力响应 PSD 和相关响应峰度,并提取统计雨流直方图。然后通过将统计雨流直方图与材料疲劳曲线相关联来得出疲劳寿命估计值。
在本文中,我们从密度估计的角度以及对自然图像统计的特定角度进行了对高斯二元限制的玻尔兹曼机器(GB-RBM)的分析。我们发现,GB-RBMS中可见单元的边际概率分布可以写为高斯人的线性叠加,该叠加位于投影平行的thelelotope的顶点,即在高尺寸中平行的。此外,我们的分析表明,GB-RBMS中可见单元的方差在建模输入分布中起着重要作用。GB-RBM。[1]。在实践中,Lee等人。提议对GB-RBMS施加稀疏的惩罚项[2]。但是,Krizhevsky成功地使用GB-RBMS仅从微小的信息中提取特征[3]。Le Roux等。 定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。 Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Le Roux等。定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Cho等。通过一些补救措施解决了培训程序的缺陷[5]。Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Theis等。进一步说明了基于Loglikelihoody的估计[6]。我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。