要克服常规调节器的带宽限制,可以采用等离子设备。等离子调节剂已显示可运行高达500 GHz [8],因此是用于此类高宽宽应用的理想解决方案。最近通过微环谐振器调制器(MRR)[9]和高达363 GBIT/s的净数据速率(MACH-ZEHNDER调制器(MZM)[10])已被证明。这些等离子调节剂基于硅光子(SIPH)平台,因此可以无缝地集成到标准的SIPH过程中以进行整体整合。这有望通过共包装[11],启用小占地面积[12]和低驾驶电压[13]来进一步改进,这是400 Gbit/s tranceivers的理想候选者。然而,单个载体IM/DD演示仍缺少血浆以上的血浆以上。
简介:下一代无线网络将依靠更小的蜂窝和更大的带宽来增加容量。通过保持无线电头硬件简单,光纤无线电技术可以实现这种密集的基站网络。利用硅光子技术实现基站硬件的小型化,可以降低尺寸和成本。对于微波光子应用,氮化硅 (SiN) 平台提供损耗极低的波导和一些最好的集成滤波器。然而,随着转向更高的载波频率,在毫米波和太赫兹频段,对光电二极管带宽的要求也会增加。当前的 SiN 平台缺少这种光电二极管,因此阻碍了高频微波光子应用。[1] 我们展示了一种 300 GHz 的通信链路,该链路由 SiN 上的异构集成单行载波 (UTC) 光电二极管作为发射器中的光电换能器实现。
10 GBIT S -1单极量子量子hamza dely +,Thomas Bonazzi +,Olivier Spitz,Etienne Rodriguez,Djamal Gacemi,Yanko Todorov,Yanko Todorov,konstantinos pantzas,gruegoire lian lian lian lian lian gayne gbit S -1自由空间数据传输Linfield,FrédéricGrillot,Angela Vasanelli,Carlo Sirtori* +这些作者对这项工作也同样贡献了H. Dely,T。Bonazzi,E。Rodriguez博士,D。 NEUniversité,de Paris大学,24 Rue Lhomond,75005 Paris,法国电子邮件:carlo.sirtori@ens.fr O. Spitz 博士、F. Grillot 教授 LTCI、巴黎电信、巴黎综合理工学院,19 Place Marguerite Perey,Palaiseau,91120,法国 K. Pantzas 博士、G. Beaudoin、I. Sagnes 博士 巴黎萨克雷大学纳米科学与纳米技术中心 - CNRS - 巴黎南大学,10 Boulevard Thomas Gobert,91120 Palaiseau,法国 L. Li 博士、AG Davies 教授、EH Linfield 教授 利兹大学电子与电气工程学院,Woodhouse Lane,利兹 LS2 9JT,英国 关键词:量子器件、中红外、自由空间数据传输