摘要:硅 - 有机杂种(SOH)电光(EO)调节器将小占地面积与低操作电压和低功率散开结合在一起,因此将自己借给大规模设备阵列的芯片整合。在这里,我们演示了一个电气包装概念,该概念可以在片上SOH设备和外部电路之间实现高密度射频(RF)接口。该概念结合了高分辨率AL 2 O 3印刷电路板和技术简单的金属线键,并且可以适合包装带有小片上键盘垫的设备阵列。在一组实验中,我们表征了基础RF构建块的性能,并通过产生高速光学通信信号来证明整体概念的可行性。Achieving line rates (symbols rates) of 128 Gbit/s (64 GBd) using quadrature-phase-shift-keying (QPSK) modulation and of 160 Gbit/s (40 GBd) using 16-state quadrature-amplitude-modulation (16QAM), we believe that our demonstration represents an important step in bringing SOH modulators from proof- of-concept experiments to deployment in commercial环境。
电子邮件:bedouin.sassiya@uni-ulm.de互联网流量的快速增长导致对高通量,低能光学互连的需求显着增加,尤其是在数据中心。氧化物构造的垂直腔表面发射激光器(VCSEL)由于其高带宽,电磁效率,可扩展性和可靠性而变得至关重要[1]。今天,100 GBIT/S PAM4 850 nm VCSEL可商购。为了进一步提高光学互连性能,使用VCSELS [2]使用短波长度多路复用(SWDM)。通过将850、880、910和940 nm的四个不同的波长取代,数据传输速率可以四倍。目标是每波长达到100 Gbit/s,将总传输速度提高到400 GBIT/s。为每个波长设计VCSEL需要仔细考虑和调整。设计区域的活动区域,量子井和屏障材料之间的不同之处在于优化的机会。此外,必须针对分布式bragg反射器(DBR)中的铝对比度和浓度定制,以解释各种波长的吸收。这些设计变化及其含义将进行详细讨论。关键挑战是在所有波长中保持一致的性能。这包括动态特征,例如相对强度噪声(RIN),共振频率和阻尼,以及静态特性,例如量子效率,阈值电流和温度稳定性。要应对这些挑战,快速反馈循环至关重要。为了解决这个问题,已经开发了一种快速的处理技术,可以在一周内处理VCSEL,与典型的RF加工VCSELS的典型3到4个月的时间范围相比。尽管修饰的芯片设计排除了RF表征,但该方法对于评估静态性能指标(例如静态性能指标,温度稳定性,电阻,电压,光谱,光谱,阈值电流,量子效率和功率vs. cur- cur-cur- cur- cur- cur- cur- slope)非常有效。图1显示了快速地段和RF加工设备之间的比较,证明了它们的相似性并验证了新过程的可靠性。
ex:exampleintent1 a icm:intent;例如:E1 A ICM:交付期; ICM:目标EX:T1; ICM:targetType sli:切片。ex:e1 a icm:property Expection; ICM:目标EX:T1; ICM:ONEOF(例如:C1 EX:C2)。ex:C1 A ICM:条件; ICM:较小(ICM:CEM值:LAT [ICM:值10; CEM:单位“ GBIT/S”])。
投机触发。10 GBIT/S访问层开关以“切割”模式和以太网框架储备优先级的第一个字节在竞争性网络路径上的优先级,用于上下一个开关。这激励延迟敏感的交易参与者将技术交易纯粹用于保留开关优先级,从而在T7系统上产生高负载。为了避免T7上不必要的技术交易,已经实施了技术解决方案。
摘要 - 在过去的几十年中,由于几个有利的功能,垂直腔表面发射激光器(VCSELS)作为短距离高数据速率网络的主要技术。这些包括低功耗,高调制速度,低成本和紧凑的尺寸。最近,VCSELS的这些固有特征也使它们非常适合各种光学无线通信(OWC)应用程序,尤其是对于短途链接,最大多达几米。本文回顾了新兴OWC域内VCSEL的一系列新颖而有希望的应用程序:数据中心(DCS),空间和恶劣环境。我们介绍并讨论在这些新兴方案中设计,实施和测试的不同基于VCSEL的OWC系统。对于DCS方案,我们提出了一种新的方法,可以建立能够使用单个VCSEL达到40 GBIT/s的数据速率的OWC链接。在太空环境中,创新的OWC系统可以支持在航天器外或小卫星内放置在视线中的电子元素之间的数据通信。VCSEL进行数据传输。在这里,为高能量物理(HEP)实验的董事会链接(B2B)链路设计了10 GBIT/S OWC系统。由于空间和HEP应用表现出极端条件,因此对OWC系统,特别是对VCSEL进行了测试,以评估其在强机械,热和辐射应力下的行为。
分布式反馈 (DFB) 激光器是城域网中基于波分复用的收发器的研究重点。本文报道了在互补金属氧化物半导体 (CMOS) 兼容 (001) Si 衬底上生长的首批 1.3 µm 量子点 (QD) DFB 激光器。实现了温度稳定的单纵模操作,边模抑制比超过 50 dB,阈值电流密度为 440 A cm −2。展示了 128 Gbit s − 1 的单通道速率,净频谱效率为 1.67 bits − 1 Hz − 1,使用 O 波段的五个通道,总传输容量为 640 Gbit s − 1。除了 QD 有源区生长之外,整体制造基本与量子阱 (QW) DFB 激光器的商业化工艺相同。这为 QD 技术进入之前由 QW 器件填充的商业应用提供了一条工艺兼容的途径。此外,在整个 CMOS 兼容 (001) Si 晶片上生长激光外延的能力还带来了降低成本、改善散热和制造可扩展性的额外好处。通过 III-V 族和 Si 的直接外延集成,人们可以设想光子学行业的一场革命,就像 CMOS 设计和加工彻底改变了微电子行业一样。从片上光学互连的系统角度讨论了这一点。
• Based on XPP III Array Processor from PactXPP Technologies providing 40 Giga operations per second (End-of-Life) • 4 Mbyte on-chip SRAM • 5Gbit of on-board SDRAM • Streak observations algorithms to detect space debris: • - HPDP outperforms Desktop PC by factor 12 • Moon Asteroid Strike + Vessel Detection - Performance of the implementation exceeds the required 1kfps•着陆器单元和流浪者的自动导航-RGB到灰度,过滤和转角检测4 ms•4 ms•4 x 1.1 GBIT/S流媒体端口与HSSL兼容
威斯康辛大学绿湾分校提倡学生和员工安全、合乎道德且有效地使用 GAI 产品。由于 GAI 工具的可用性和开发速度很快,应注意 GBIT 向用户提供的信息,以提醒用户有关产品和流程的注意事项和担忧。员工和学生可以自由使用集成到大学提供的信息技术资源(例如 SIS、Salesforce)中的 GAI 工具。非大学提供的 GAI 工具的用户必须评估该 GAI 工具,以确认其使用是否适当以及是否符合威斯康辛大学绿湾分校和威斯康辛大学的安全标准。
操作、时间配置文件、所需时间参考/同步等。实验将通过数据链路与航天器的航空电子设备连接。一个链路将用于实验的指挥和管理(小型卫星平台或立方体卫星标准接口的典型数据总线),如果需要,将提供一个高比特率链路用于数据收集,最大典型数据速率为 100 Mb/s。使用这些链路,实验将能够访问至少 TBD Gbit 的数据存储。在选择航天器时将提供接口的详细规范。数据将被转储到 TBD 位置的主地面站。注意:其他特定接口应由实验本身(独立实验)生成,因为不能保证由航天器提供。
量子随机数生成器 (QRNG) 承诺生成完全不可预测的随机数。然而,以随机模型形式对随机数进行安全认证通常会引入难以证明或不必要的假设。两个重要的例子是将对手限制在经典机制中以及连续测量结果之间的相关性可以忽略不计。此外,不严格的系统特性会打开一个安全漏洞。在这项工作中,我们通过实验实现了一个不依赖于上述假设的 QRNG,其随机模型是通过严格的计量方法建立的。基于真空涨落的正交测量,我们展示了 8 GBit/s 的实时随机数生成率。我们的安全认证方法提供了许多实际好处,因此将在量子随机数生成器中得到广泛应用。特别是,我们生成的随机数非常适合当今的传统和量子加密解决方案。