获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要利比亚的通用电力公司(Gecol)近年来经历了电力需求激增,导致电力短缺,尤其是在夏季高峰期。这些短缺通常会因大生成单位故障或传输线破坏引起的系统中断而加剧,这极大地影响了该国的稳定性。利比亚正在进行的政治不稳定进一步加剧了这一问题,再加上电力供应问题,在该国一些最大的领域对石油和天然气的产生产生了负面影响。本研究通过采用机器学习(ML)技术来解决电力负荷需求预测的挑战,特别关注基于中期负载预测(MTLF)的人工智能算法。该研究比较了不同ML方法与实际消费数据的准确性和收敛性,旨在确定最有效的方法。准确的负载预测对于像Gecol这样的电气公用事业至关重要,可以有效地满足客户需求并优化发电和传输。着眼于班加西,这项研究开创了机器学习技术来预测总能耗和需求的应用。该研究的发现得到了从Gecol的班加西地区控制中心(BRCC)获得的现实世界数据的验证,这证明了ML在利比亚改善电力载荷预测的潜力。该研究得出以下结果:额外的树回收算法作为目标的孕妇产生了最佳结果,精度值为85%。Huber回归算法产生了赤字的最佳结果