摘要。今天的深度学习方法着重于如何设计目标函数以使预测尽可能接近目标。同时,必须设计适当的神经网络体系结构。现有方法忽略一个事实,即当输入数据逐层特征转换时,会丢失大量信息。本文深入研究了信息瓶颈和可逆功能的重要问题。我们提出了可编程梯度信息(PGI)的概念,以应对深网所需的各种更改以实现多个目标。PGI可以为目标任务提供完整的输入信息来计算目标函数,以便可以获取可靠的梯度信息以更新网络参数。此外,设计了轻巧的网络体系结构 - 一般有效的层聚合网络(GELAN)。Gelan确认PGI在轻量级模型上取得了卓越的成绩。我们在MS可可对象检测数据集上验证了所提出的Gelan和PGI。结果表明,与基于深度卷积开发的状态方法相比,Gelan仅使用常规召集操作员来实现更好的参数利用。PGI可用于从轻量级到大型的各种型号。它可用于获取完整的信息,因此,与使用大型数据集进行预训练的最新模型可以实现训练范围的模型,比较结果如图1。源代码在https://github.com/wongkinyiu/yolov9上发布。
摘要。对象检测算法,特别是基于 YOLO 的算法,在平衡速度和准确性方面表现出了显著的效率。然而,它们在脑肿瘤检测中的应用仍未得到充分探索。本研究提出了 RepVGG-GELAN,这是一种新颖的 YOLO 架构,通过 RepVGG 进行了增强,RepVGG 是一种重新参数化的卷积方法,用于对象检测任务,特别侧重于医学图像中的脑肿瘤检测。RepVGG-GELAN 利用 RepVGG 架构来提高检测脑肿瘤的速度和准确性。将 RepVGG 集成到 YOLO 框架中旨在实现计算效率和检测性能之间的平衡。本研究包括基于空间金字塔池化的广义高效层聚合网络 (GELAN) 架构,进一步增强了 RepVGG 的能力。在脑肿瘤数据集上进行的实验评估表明,RepVGG-GELAN 在精度和速度方面超越了现有的 RCS-YOLO。具体而言,RepVGG-GELAN 在 240.7 GFLOPs 的运行速度下,与现有的最新方法相比,其精度提高了 4.91%,AP50 提高了 2.54%。提出的具有 GELAN 架构的 RepVGG-GELAN 取得了令人鼓舞的结果,成为医学图像中准确、高效地检测脑肿瘤的最先进的解决方案。实现代码已公开发布在 https://github.com/ThensiB/RepVGG-GELAN。