参考文献1。Eisenhauer EA,Therasse P,Bogaerts J等:实体瘤的新响应评估标准:修订后的Recist指南(版本1.1)。 Eur J Cancer 2009; 45:228 - 247。 2。 health USD,服务H,其他:临床试验终点,以批准非小细胞肺癌药物和生物制剂:工业指南,2015年3。 Mandrekar SJ,A M-W,Meyers J等人:使用Recist 1.1数据仓库评估替代分类肿瘤指标和切割点,用于响应分类。 J Clin Orthod 32:841 - 850,2014 4。 Blumenthal GM,Karuri SW,Zhang H等人:先进的非小核心肺癌的靶向和标准疗法的总体反应率,自由生存和总生存期:美国食品和药物管理局试验级和患者水平分析。 J Clin Oncol 33:1008 - 1014,2015 5。 Stein WD,Figg WD,Dahut W等:临床试验中患者数据的肿瘤生长率与患者生存密切相关:评估临床试验数据的新型策略。 肿瘤学家13:1046 - 1054,2008 6。 Carpenter B,Gelman A,Hoffman MD等:Stan:一种概率的编程语言[Internet]。 J Stat SoftW 2017; 76,可从以下网站获得:http://www.stat.colum-bia.edu/~gelman/~gelman/research/publish/publish/stan-paper-aug-2015.pdfEisenhauer EA,Therasse P,Bogaerts J等:实体瘤的新响应评估标准:修订后的Recist指南(版本1.1)。Eur J Cancer 2009; 45:228 - 247。2。health USD,服务H,其他:临床试验终点,以批准非小细胞肺癌药物和生物制剂:工业指南,2015年3。Mandrekar SJ,A M-W,Meyers J等人:使用Recist 1.1数据仓库评估替代分类肿瘤指标和切割点,用于响应分类。J Clin Orthod 32:841 - 850,2014 4。 Blumenthal GM,Karuri SW,Zhang H等人:先进的非小核心肺癌的靶向和标准疗法的总体反应率,自由生存和总生存期:美国食品和药物管理局试验级和患者水平分析。 J Clin Oncol 33:1008 - 1014,2015 5。 Stein WD,Figg WD,Dahut W等:临床试验中患者数据的肿瘤生长率与患者生存密切相关:评估临床试验数据的新型策略。 肿瘤学家13:1046 - 1054,2008 6。 Carpenter B,Gelman A,Hoffman MD等:Stan:一种概率的编程语言[Internet]。 J Stat SoftW 2017; 76,可从以下网站获得:http://www.stat.colum-bia.edu/~gelman/~gelman/research/publish/publish/stan-paper-aug-2015.pdfJ Clin Orthod 32:841 - 850,2014 4。Blumenthal GM,Karuri SW,Zhang H等人:先进的非小核心肺癌的靶向和标准疗法的总体反应率,自由生存和总生存期:美国食品和药物管理局试验级和患者水平分析。J Clin Oncol 33:1008 - 1014,2015 5。Stein WD,Figg WD,Dahut W等:临床试验中患者数据的肿瘤生长率与患者生存密切相关:评估临床试验数据的新型策略。肿瘤学家13:1046 - 1054,2008 6。Carpenter B,Gelman A,Hoffman MD等:Stan:一种概率的编程语言[Internet]。J Stat SoftW 2017; 76,可从以下网站获得:http://www.stat.colum-bia.edu/~gelman/~gelman/research/publish/publish/stan-paper-aug-2015.pdf
统计的核心挑战之一是从样本到人群概括。自然的第一步是调整样本和人群之间的已知,预期或假定差异1。但是,即使是这种基本的纠正水平也可能具有挑战性,尤其是当样本和人口在许多方面差异时(例如,社会调查中的年龄,性别,性别,教育,种族,地理和政治隶属关系)。加权是总结调整的一种方式:样本中的每个项目都有非负权重,该权重与人口中的代表成正比。人口估计。经典的调查权重出现了四个困难:重量,不确定性估计,小区域估计和回归建模。重量的构造很困难,因为现实世界调查需要针对许多因素进行调整,并且基于延伸后或采样估计概率的简单方法通常会导致高度嘈杂的权重。噪声较高的权重导致加权估计的效率损失:权重中存在的可变性越多,加权调查估计的效率就越小(Korn and Graubard,1999)。This in turn motivates more complicated approaches based on smoothing or modeling the weights, which can be done but at the cost of many choices in modeling and estimation (Little, 1991; Gelman and Little, 1998; Elliott and Little, 2000; Little and Vartivarian, 2003; Chen et al., 2006; Gelman, 2007; Chen et al., 2012, 2017; Xie et al., 2020; Si et al., 2020; Ben-Michael等人,2024年)。
TVT 社区日间学校是一所包容性的男女同校独立犹太日间学校,为 TK 至 12 年级的犹太和其他信仰的学生提供服务,位于加利福尼亚州欧文市。TVT 由 Irving “Papa” Gelman 于 1991 年创立,以纪念他的女儿 Naomie Gelman Weiss,如今已从一所拥有 36 名学生的学校发展成为如今拥有 800 多名优秀学生的学校,成为美国规模最大、排名最高的犹太日间学校之一。TVT 致力于每个孩子的成长和探索,因其注重探究和创新以及在课堂内外提供充满机会的教育而备受推崇。TVT 以社区、正义、善良、尊重、真理和修复世界 (tikkun olam) 的犹太价值观为基础,是一个充满发现、探索、善良和包容的社区。TVT 拥有美丽的校园和无与伦比的设施,是一个接受和庆祝每个学生旅程的地方。在才华横溢、富有同情心的教师的指导下,TVT 的学生因今天的成就而受到赞扬,并有能力探索未来的自己。学校的核心是所有社区成员、学生和成年人的才能和品格。他们一起踏上旅程和合作,为一生的探索和对世界产生积极影响的坚定承诺奠定基础。TVT 寻求一位经验丰富、创新和大胆的战略领导者担任战略参与助理校长。这个新职位将作为校长和高级领导团队在选民参与各个方面的主要思想伙伴。理想的候选人将是一位有远见和战略性的领导者,在设计、实施和评估综合和协作的使命一致战略方面拥有丰富的经验,以加强潜在家庭、新入学家庭、现有家庭、校友、捐助者和教育社区合作伙伴的参与。成功的领导者应善于在协作的工作环境中成长,在跨部门合作方面富有创意,在解决问题方面有远见,并且注重结果。加入 TVT 的候选人会发现,领导团队志向远大,渴望从新任战略合作学院副院长的远见、才华和专业知识中受益。
不寻常的环境或遭受损害的环境可能需要数年的时间才能收集。标记以注释测量值也可能是有限的或昂贵的,需要域专家的投入。这种不完整的数据激发了相似资产之间的共享信息;具体而言,具有全面数据(或已建立模型)的系统是否可以为那些提供不完整信息的人提供支持。从一台机器到另一种机器的知识转移概念导致了基于人群的发展(Bull等,2021; Gardner,Bull,Bull,Gosliga等,2021; Gosliga等,Gosliga等,2021)或车队监控(Zaccaria et al。,2018)。初步研究(主要)考虑系统之间相似性的序列化(Gosliga等,2021)和用于传输数据和/或模型从源到目标域的工具(Bull等,2021; Gardner,Bull,Bull,Dervilis等人,2021; Michau&Fink&Fink&Fink,2019)。这里考虑了一种替代方法,从而鉴于收集到的系统组的测量值进行了合并的分解(Dhada等,2020)。具体来说,考虑到收集的人群记录的信息,学会了一组相关的层次模型。提出了两个案例研究:对操作风电场的操作卡车舰队和风能预测的生存分析。人口级模型是使用近阶贝叶斯建模(Gelman等,2013; Wand,2009)学习的,与独立模型和两个基准相比,提供了稳健的预测和差异。多任务学习(MTL)方法(Murphy,2012; Wand,2009)自动共享相关域(即子组)之间的信息,从而使信息稀疏的资产从数据富含数据的人那里借鉴了统计强度(通过相关变量)。
第 7 层皮质接口:一种可扩展且微创的脑机接口平台 Elton Ho 1*、Mark Hettick 1*、Demetrios Papageorgiou 1、Adam J. Poole 1、Manuel Monge 1、Maria Vomero 1、Kate R. Gelman 1、Timothy Hanson 1、Vanessa Tolosa 1、Michael Mager 1、Benjamin I. Rapoport 1 + 1 Precision Neuroscience Corporation,美国纽约州纽约市和加利福尼亚州旧金山市 * 这些作者对本文的贡献相同 + 通讯作者 摘要 脑机接口的发展进展标志着在各种疾病状态下恢复、替换或增强丢失或受损的神经功能的潜力。现有的脑机接口依赖于侵入性手术或穿脑电极,这限制了该技术的可寻址应用和符合条件的患者数量。本文描述了一种构建神经接口的新方法,包括可适形薄膜电极阵列和微创手术输送系统,它们共同促进了与大部分皮质表面的双向通信(可同时进行记录和刺激)。我们证明了将包含超过 2,000 个微电极的可逆植入物同时快速输送到哥廷根小型猪大脑两个半球的多个功能区域的安全性和可行性,无需开颅手术,有效插入速率快于每通道 40 毫秒,不会损坏皮质表面。我们进一步展示了该系统在高密度神经记录、局部皮质刺激和精确神经解码方面的性能。这样的系统有望加速更好地解码和编码神经信号的努力,并扩大可从神经接口技术中受益的患者群体。
lundberg&Lee(2017)提出了一种统一的方法,以应用局部解释性(单个样本中单个变量的可变分配)和全局解释性(整个模型的可变概述),通过应用Shapley(1953)提出的游戏理论的收益原理的公平分布,通过应用收益原理的公平分布。现在称为Shap(Shapley添加说明),该建议的框架解释了ML模型的预测,其中输入变量代替了玩家,并且使用Shapley值来衡量它们对特定预测的贡献。连续地,Redell(2019)提出了一个度量标准,该指标将Shapley值的添加特性与Gelman(2018)的R平方(R2)的鲁棒性相结合,以产生一个方差分解,以准确地将每个变量对模型的探索功率的贡献进行贡献。我们还使用签名的R2,以表示与线性SEM一致的连接的调节,因为DAG中的边缘表示节点调节(如果阳性;如果抑制,如果为阴性)。使用符号(beta)(即,来自输入节点上的输出节点的线性模型(LM)拟合的系数估计值)的符号已被重新覆盖。此外,为了确定节点调节相对于DAG的局部意义,可以通过将其输入节点的ShapleyR2求和来计算每个结果节点的R-squared值的塑形分解(r = 1,...,...,r)。因此,该函数使用进度条来检查每个观察值的内核形状评估的进度。最后,应该注意的是,计算内核形状值所需的操作本质上是耗时的,计算时间与预测变量数量和观测值的数量成正比。
* Johnson,D.S。和J.A. Parker 和N.Souleles(2006)。 家庭支出和2001年的所得税回扣。 《美国经济评论》 - 帕克,乔纳森·A,尼古拉斯·S·塞勒斯,大卫·约翰逊和罗伯特·麦克莱兰(2013)。 消费者支出和2008年的经济刺激支付。 美国经济评论 * Broda,Christian and Jonathan Parker(2016)。 2008年的经济刺激支付和对消费的总需求。 Mon-Etary Economics ∗ Shapiro,Matt,Michael Gelman,Shachar Kariv,Dan Silverman和Steven Tadelis(2017)。 个人如何平稳支出:使用帐户数据中的2013年政府关闭的证据。 公共经济学杂志 - 贝克,斯科特(2017)。 债务和对家庭的消费反应发生冲击。 政治经济学杂志∗ Fagereng,Andreas,Martin Blomho€Holm和Gisle Natvik(2021)。 MPC异质性和家庭资产负债表。 aej:Macro ∗ Mikhail Golosov,Michael Graber,Magne Mogstad,David Novgorodsky(2021)。 美国人如何应对家庭财富和未获得收入的特质和外在变化。 nber WP 29000。 ∗ Ganong P.,D。Jones,P。Noel,D。Farrell,F。Greig,C。小麦(2020)。 财富,种族和消费典型收入冲击的平滑。 芝加哥大学,贝克尔·弗里德曼(Becker Friedman)经济学研究所工作论文 - Marco Di Maggio,Amir Kermani,Benjamin J. Keys,Tomasz Piskorski,Rodney Ramcharan,Amit Seru,Amit Seru,Vincent Yao(2017)。 衡量流动性的造成的价值,并进行罚款。和J.A. Parker和N.Souleles(2006)。家庭支出和2001年的所得税回扣。《美国经济评论》 - 帕克,乔纳森·A,尼古拉斯·S·塞勒斯,大卫·约翰逊和罗伯特·麦克莱兰(2013)。消费者支出和2008年的经济刺激支付。美国经济评论 * Broda,Christian and Jonathan Parker(2016)。2008年的经济刺激支付和对消费的总需求。Mon-Etary Economics ∗ Shapiro,Matt,Michael Gelman,Shachar Kariv,Dan Silverman和Steven Tadelis(2017)。个人如何平稳支出:使用帐户数据中的2013年政府关闭的证据。公共经济学杂志 - 贝克,斯科特(2017)。债务和对家庭的消费反应发生冲击。政治经济学杂志∗ Fagereng,Andreas,Martin Blomho€Holm和Gisle Natvik(2021)。MPC异质性和家庭资产负债表。aej:Macro ∗ Mikhail Golosov,Michael Graber,Magne Mogstad,David Novgorodsky(2021)。美国人如何应对家庭财富和未获得收入的特质和外在变化。nber WP 29000。∗ Ganong P.,D。Jones,P。Noel,D。Farrell,F。Greig,C。小麦(2020)。财富,种族和消费典型收入冲击的平滑。芝加哥大学,贝克尔·弗里德曼(Becker Friedman)经济学研究所工作论文 - Marco Di Maggio,Amir Kermani,Benjamin J. Keys,Tomasz Piskorski,Rodney Ramcharan,Amit Seru,Amit Seru,Vincent Yao(2017)。衡量流动性的造成的价值,并进行罚款。利率通过:抵押贷款利率,家庭消费和自愿性,美国经济审查 - 科恩·戴维(Coyne David),伊齐克·法德隆(Itzik Fadlon)和汤玛·波尔齐奥(Tommaso Porzio)(2021年)。- Jeppe Druedahl,Emil Bjerre Jensen,Soren Leth-Petersen(2022)。从未来的持续现金流中消耗的边际倾向:交易数据的证据。半结构模型
至少在一项争议上满足这些要求的补充材料将不被允许作为一方参与。获准介入者将成为诉讼的一方,但须遵守准予介入命令中的任何限制,并有机会充分参与听证会,包括提供证据和盘问证人的机会。由于委员会已最终裁定该修正案不涉及重大危害考虑,因此如果要求举行听证会,则不会中止该修正案的有效性。任何听证会都将在修正案生效期间举行。听证会请求或准予介入请愿书必须在上述日期之前提交给委员会秘书,美国核管理委员会,华盛顿特区 20555,收件人:档案和服务处,或可递交至委员会公共文件室,地址:华盛顿特区西北区 L 街 2120 号 Gelman 大厦。如果在通知期的最后 10 天内提交请愿书,请愿人应立即拨打免费电话西联汇款 1-(800) 248-5100(密苏里州 1-(800) 342-6700)通知委员会。应向西联汇款运营商提供数据报识别号 N1023 和以下致(项目主管)的消息:请愿人的姓名和电话号码、请愿书邮寄日期、工厂名称以及本《联邦公报》通知的发布日期和页码。还应将请愿书副本寄送至美国核管理委员会总法律顾问办公室(华盛顿特区 20555)和许可证持有人的律师。如果委员会、会议主持人或原子能安全和许可委员会未根据《联邦法规》10 CFR 2.714(a)(1)(i)-(v) 和 2.714(d) 中规定的因素权衡后确定应予批准该请愿书和/或请求,则不会受理未及时提交的干预许可请愿书、修改请愿书、补充请愿书和/或听证请求。
请在我们身份验证您的情况下等待...2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。 但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。 例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。 Berger,J。2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。Berger,J。一些研究人员提出了各种技术来提出专家判断以告知先前分布的技术。,例如,O'Hagan等。(2006)提供了先前启发的综合指南,包括技术和潜在的陷阱。其他研究的重点是开发使用贝叶斯先验的专家的信念的方法(例如,Johnson等,2010)。此外,还有各种可用的在线资源可以帮助进行贝叶斯分析。例如,Van de Schoot的在线统计培训提供了有关高级统计主题的教程和练习。总的来说,在组织科学中使用贝叶斯方法的使用变得越来越重要,但是它需要仔细考虑先前的分布和启发技术,以确保准确的结果。注意:我已经删除了一些特定的参考,并重点介绍了要点。让我知道您是否希望我保留更多原始文本!van de de Schoot-Hubeek,W.,Hoijtink,H.,Van de Schoot,R.,Zondervan-Zwijnenburg,M。&Lek,K。评估专家判断引发程序,以相关性和应用于贝叶斯分析。客观的贝叶斯分析:对主观贝叶斯分析的案例,批评和个人观点。Brown,L。D.经验贝叶斯和贝叶斯方法的现场测试,用于击球平均赛季预测。Candel,M。J.,Winkens,B。Monte Carlo研究在纵向设计中多级分析中的经验贝叶斯估计值的性能。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。darnieder,W。F.贝叶斯方法依赖数据依赖的先验。&Chen,F。权力先验:具有统计功率计算的理论和应用。Muthen,B。,Asparouhov,T。贝叶斯结构方程建模:使用数据依赖性先验对实体理论的更灵活的表示。Rietbergen,C.,Klugkist,I.,Janssen,K。J.,Moons,K。G.&Hoijtink,H。将历史数据纳入随机治疗试验的分析中,以及基于系统文献搜索和专家精力提示的知识的贝叶斯PTSD-Traigntory分析。van der Linden,W。J.在自适应测试中使用响应时间进行项目选择。Wasserman,L。使用数据依赖性先验对混合模型的渐近推断。请注意,我保留了您的消息的原始语言而不翻译。给定文本:释义此文本:数据(版本V1.0)。Zenodo(2020)。元素Google Scholar Chung,Y.,Gelman,A.,Rabe-Hesketh,S.,Liu,J。&Dorie,V。层次模型中协方差矩阵的点估计值较弱。J.教育。行为。Stat。40,136–157(2015)。Google Scholar Gelman,A.,Jakulin,A.,Pittau,M。G.&Su,Y.-S。 logistic和其他回归模型的弱信息默认分布。ann。应用。Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。 B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。 2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。 am。 Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。am。Stat。3(Clarendon,1961).Seaman III,J。W.,Seaman Jr,J。W.&Stamey,J。D.指定非信息先验的隐藏危险。66,77–84(2012).MathScinet Google Scholar Gelman,A。层次模型中方差参数的先前分布(Browne和Draper对文章的评论)。贝叶斯肛门。1,515–534(2006).MathScinet Math Google Scholar Lambert,P.C.,Sutton,A。J.,Burton,P.R.,Abrams,K。R.&Jones,D。R.含糊不清?对使用Winbugs在MCMC中使用模糊的先验分布的影响的仿真研究。Stat。Med。24,2401–2428(2005)。MathScinetGoogle Scholar Depaoli,S。在不同程度的类别分离的情况下,GMM中的混合类别恢复:频繁主义者与贝叶斯的估计。Psychol。方法18,186–219(2013)。Google Scholar DePaoli,S。&Van de Schoot,R。贝叶斯统计中的透明度和复制:WAMBS-CHECKLIST。Psychol。方法22,240(2017)。本文提供了有关如何在使用贝叶斯统计数据估算模型时如何检查各个点的分步指南。统计建模模型检查中的贝叶斯模型检查和鲁棒性是一种用于评估统计模型准确性的方法。它涉及使用各种诊断工具来检查模型的潜在问题,例如偏见或过度拟合。贝叶斯模型检查是传统模型检查的扩展,将先前的信念纳入分析中。再次。贝叶斯模型检查的关键应用之一是检测先前数据冲突。贝叶斯模型检查近年来变得越来越重要,因为它能够提供对统计模型的更细微理解的能力。它允许研究人员量化数据中包含的信息量,并评估其结论的可靠性。一些研究人员为贝叶斯模型检查技术的发展做出了重大贡献,包括Nott等,Evans和Moshonov,Young and Pettit,Kass和Raftery,Bousquet,Veen和Stoel,以及Nott等。这些研究人员介绍了各种诊断工具和评估先前数据协议和冲突的标准。这会发生在同一数据集的先前信念和数据之间存在差异时。像埃文斯(Evans),莫索诺夫(Moshonov)和杨(Young)这样的研究人员已经开发了使用诸如后验预测分布等指标来量化这一冲突的方法。贝叶斯模型检查也已应用于贝叶斯模型中的可能性推断。像Gelman,Simpson和Betancourt这样的研究人员强调了理解表达先前信念的上下文的重要性。除了其方法论上的意义外,贝叶斯模型检查还在社会科学,医学和金融等领域还采用了实际应用。它可以通过确定统计模型的潜在问题来帮助研究人员和政策制定者做出更明智的决定。在此处给定文章,此处28,319–339(2013).MathScinet Math Google Scholar Rubin,D。B. Bayesian具有合理的频率计算,适用于应用的统计学家。ann。Stat。J.am。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。 Stat。 合作。 85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。Stat。合作。85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。85,398–409(1990)。这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。ifna(1991)。3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。ieee trans。模式肛门。马赫。Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。Intell。6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。J. Chem。物理。21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J.&Roweth,D。Hybrid Monte Carlo。物理。Lett。 J. am。 Stat。 合作。Lett。J.am。Stat。合作。b 195,216–222(1987)。&Wong,W。H.通过数据增强计算后验分布。82,528–540(1987)。 本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。 本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。 元建模,因果推理和社会科学(2017)。Gelman,A。 &Rubin,D。B. 使用多个序列从迭代模拟中推断。 Stat。 SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.82,528–540(1987)。本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。元建模,因果推理和社会科学(2017)。Gelman,A。&Rubin,D。B.使用多个序列从迭代模拟中推断。Stat。SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.SCI。7,457–511(1992)。一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.一般方法用于监测迭代模拟的收敛性。J. Comput。图。Stat。7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。马尔可夫链蒙特卡洛在实践中57,45-58(1996)。(2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。(2017)。关键参考包括Minka(2013),Hoffman等。(2015),Liang等。 Q.(2015),Liang等。Q.Q.新方法利用排序差异,折叠和本地化技术来增强\(\ hat {r} \)的准确性。此外,本综述强调了贝叶斯建模中变异推理方法的重要性,尤其是随机变体,这些变体是大型数据集或复杂模型的流行近似贝叶斯推理方法的基础。(2013),Kingma和BA(2014),Li等。 (2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2013),Kingma和BA(2014),Li等。(2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2008),Forte等。(2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。(2014)。用于回归分析中的稀疏信号。该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J.&Friston,K。J. Neuroimage(2005)。咨询。临床。Google Scholar Smith,M.,Pütz,B。,Auer,D。&Fahrmeir,L。Neuroimage(2003)中还讨论了通过空间贝叶斯变量选择评估大脑活动。Google Scholar此外,检查了Zhang,L。,Guindani,M.,Versace,F。&Vannucci,M。Neuroimage(2014)的时空非参数贝叶斯变量选择模型用于聚类相关时间课程。判断中信息处理的研究采用了各种方法,如Bolt等人的研究中所见,他们探讨了两种戒烟剂在联合使用的有效性,理由是J.Psychol。80,54–65,2012)。在类似的脉中,Billari等。基于贝叶斯范式内的专家评估(人口统计学51,1933–1954,2014)开发了随机人群预测模型。其他研究已经深入研究了暂时的生活变化及其对离婚时间的影响(Fallesen&Breen,人口统计学53,1377-1398,2016)。同时,Hansford等人。分析了美国律师将军在最高法院的政策领域的位置(Pres。螺柱。49,855–869,2019)。此外,研究重点是使用健康行为综合模型来预测限制“自由糖”消耗(Phipps等人,食欲150,104668,2020)。此外,研究还将贝叶斯统计数据引入了健康心理学,并强调了其在该领域的潜在好处(Depaoli等人,Health Psychol。修订版11,248–264,2017)。Psychol。Gen. 142,573–603,2013; Lee,M。D.,J。 数学。Gen. 142,573–603,2013; Lee,M。D.,J。数学。贝叶斯估计的应用已显示在各种情况下取代传统的t检验,包括认知建模和生态研究(Kruschke,J。Exp。Psychol。55,1-7,2011)。此外,层次结构的贝叶斯模型已在生态学中用于建模种群动态和推断环境参数(Royle&Dorazio,生态学的分层建模和推断)。通过包括Gimenez等人在内的各种研究人员的工作进一步开发了这种方法。(在标记人群中建模的人口统计过程中,3)和King等。(贝叶斯分析人群生态学)。研究还研究了贝叶斯方法在生态学中的使用,例如使用汉密尔顿蒙特卡洛(Monnahan等人,方法ECOL。Evol。8,339–348,2017)。贝叶斯对生态学的重要性的重要性已被埃里森(Elison)等研究人员(ecol。Lett。 7,509–520,2004)。 最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。 也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。 Soc。 系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。Lett。7,509–520,2004)。最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。Soc。系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。系列C 57,609–632,2008)。在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。- Dennis等。-McClintock等。总而言之,对判断中信息处理的研究以及贝叶斯统计在各个领域的应用,使人们对这些概念及其对决策和人口建模的影响有了更深入的了解。这些作品涵盖了种群建模的各个方面,包括贝叶斯估计,综合人群模型和遗传关联研究。关键论文包括: - King and Brooks(2008)关于贝叶斯对具有异质性和模型不确定性的封闭种群的估计。(2006)使用生态数据估计密度依赖性,过程噪声和观察误差。(2012)基于多阶段随机步行开发了一个一般的离散时间框架,用于动物运动。-Aeberhard等。(2018)对渔业科学的州空间模型进行了综述。其他值得注意的贡献包括: - Isaac等。(2020)讨论了大规模物种分布模型的数据集成。-McClintock等。(2020)提出了一种使用隐藏的马尔可夫模型来发现生态状态动力学的方法。- King(2014)审查了统计生态及其应用。- Andrieu等。(2010)引入了粒子马尔可夫链蒙特卡洛方法,用于复杂的种群建模。这些研究表明,从人口生存能力分析到遗传关联研究,在理解生态系统中采用的统计技术的多样性,强调了该领域数据整合和高级建模方法的重要性。提出一种利用转移学习以提高数据质量的方法。基因组学,统计和机器学习的交集在理解复杂的生物系统中变得越来越重要。最近的研究探索了多摩智数据集的整合,以发现对人类健康和疾病的新见解。由Argelaguet等人建立了整合多派数据集的框架,该框架采用贝叶斯方法来识别生物学过程的关键因素。该方法已应用于包括单细胞转录组学在内的各个领域,如Yau和Campbell的工作所示,他们使用贝叶斯统计学习来分析大型数据集。研究的另一个领域涉及在英国生物库中对跨树木结构的常规医疗数据进行遗传关联的分析。诸如Stuart和Satija的研究表明,将单细胞分析与基因组学相结合以揭示有关复杂生物系统的新信息的潜力。深层生成模型的发展也促进了单细胞转录组学的进步,如Lopez等人的工作所证明的那样,后者应用了深层生成模型来分析大型数据集。此外,与Wang等人一起,对单细胞转录组学中数据降解和转移学习的研究已显示出令人鼓舞的结果。最近的研究还强调了科学研究中可重复性和公平原则(可访问,可互操作和可重复使用)的重要性。这包括诸如癌症基因组图集和Dryad&Zenodo之类的举措,旨在促进开放研究实践。提出了功能性变分贝叶斯神经网络。机器学习技术(包括变异自动编码器)的应用也在理解复杂的生物系统方面变得越来越重要。正如Paszke等人的评论中所述,变化自动编码器为将基因组学和统计数据与深层生成模型的整合提供了有希望的方法。总体而言,多摩智数据集,机器学习技术和统计分析的进步的整合已经开辟了新的途径,以理解复杂的生物系统并揭示了对人类健康和疾病的新见解。概率建模的最新进展导致了几种将深度学习与贝叶斯推论相结合的技术的发展。该领域的一个关键概念是变异自动编码器(VAE),它通过将其映射到较低维度的空间中来了解输入数据的概率分布。Hinton等人引入的Beta-Vae框架将VAE限制为学习基本的视觉概念。研究人员还探索了贝叶斯方法在神经网络中的应用,例如高斯过程和周期性随机梯度MCMC。例如,尼尔在神经网络上的贝叶斯学习方面的工作突出了神经网络与高斯过程之间的联系。此外,已证明将深层合奏用于预测不确定性估计在各种任务中都是有效的。最近的预印象提出了新的新技术,包括功能变分贝叶斯神经网络和细心的神经过程。后者使用注意机制从输入数据中学习相关特征。res。另一项研究的重点是开发更可扩展和可解释的模型,例如标准化流量和周期性随机梯度MCMC。该领域在理解深度学习的理论基础上,包括神经网络与高斯过程之间的联系,也看到了重大进展。Mackay和Williams的作品为贝叶斯倒退网络提供了一个实用的框架,而Sun等人。总的来说,这些进步有助于我们理解概率建模及其在深度学习中的应用。Hoffman,M。D.&Gelman,A。 No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。 J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。Hoffman,M。D.&Gelman,A。No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. Mach。学习。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。Stat。Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。J.am。Stat。合作。93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。&Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. R. Stat。Soc。系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Google Scholar Ntzoufras,I。使用Winbugs Vol。698(Wiley,2011).Lunn,D。J.,Thomas,A.,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Spiegelhalter,D.,Thomas,A。,Best,N。&Lunn,D。OpenBugs用户手册版本3.2.3。OpenBugs(2014).Plummer,M。Jags:使用Gibbs采样的贝叶斯图形模型分析程序。proc。第三国际统计计算的国际研讨会124,1-10(2003)。Google Scholar Plummer,M。Rjags:使用MCMC的贝叶斯图形模型。r软件包版本,4(6)(2016).Salvatier,J.,Wiecki,T。V.&Fonnesbeck,C。使用Pymc3在Python中进行概率编程。peerj Comput。SCI。 2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。SCI。2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。2,E55(2016)。Google Scholar de Valpine,P。等。与模型的编程:编写敏捷的通用模型结构的统计算法。J. Comput。图。Stat.s 26, 403–413 (2017).MathSciNet Google Scholar Bayesian analysis software JASP version 0.14 available for computer use (2020) Lindgren F & Rue H used R-INLA for Bayesian spatial modeling in a Stats journal article (2015) Vanhatalo et al's GPstuff allowed Bayesian Gaussian process modeling with Machine Learning Res articles (2013) Blaxter gave research methods in他的2010年McGraw-Hill教育书《如何进行研究》 BetanCourt在Github上创建了一个原则上的贝叶斯工作流程,主张最佳实践(2020)Veen&Schoot使用了对英超联赛数据的后验预测检查,并在OSF(2020年)上发布了它,并在Kramer&Bosman(2020)Kramer&Bosman在Kramer&Bosman在Kramersship Sumpership Summerschool inter Smixship Summershood prosentie in Utrech Torne in utrecht in of to inty介绍(2019年),UTRECHINE(2019年)(2019年)(2019年)(2019年)(2019年)(2019年)(2019年) Acta Math匈牙利文章(1955)Lesaffre&Lawson在2012年Wiley Publication撰写了一种新的公理概率理论(1955年),Hoijtink等人使用了贝叶斯评估,用于认知诊断评估,发表在Psych Methods In In In Psych Methods Journal(2014)