基因组对于理解微生物生态学和进化至关重要。高通量、长读长 DNA 测序的出现使得从环境样本中大规模恢复微生物基因组成为可能。然而,由于这些环境极其复杂,扩大土壤和沉积物的微生物基因组目录一直具有挑战性。在这里,我们对在丹麦收集的 154 个土壤和沉积物样本进行了深度、长读长纳米孔测序,并通过优化的生物信息学流程恢复了 15,314 个新微生物物种的基因组,其中包括 4,757 个高质量基因组。恢复的微生物基因组涵盖 1,086 个新属,并为 612 个先前已知的属提供了第一个高质量参考基因组,将原核生物生命树的系统发育多样性扩大了 8%。长读长组装体还能够恢复数千个完整的 rRNA 24 操纵子、生物合成基因簇和 CRISPR-Cas 系统,而这些系统在之前的陆地基因组目录中都未被充分代表且高度碎片化。此外,将恢复的 MAG 整合到公共基因组数据库中可显著提高土壤和沉积物宏基因组数据集的物种级分类率,从而增强陆地微生物组表征。通过这项研究,我们证明了长读长 29 测序和优化的生物信息学能够以经济高效的方式从高度复杂的生态系统中恢复高质量的微生物 30 基因组,而生态系统仍然是最大的未开发生物多样性来源,可用于扩展基因组数据库和填补生命之树的空白。32
新冠病毒在全球大流行,已成为重大健康问题 [1,2] 。截至 2020 年 6 月 1 日,世界卫生组织报告全球共有 6,057,853 例新冠肺炎病例,371,166 人死亡 [3] 。冠状病毒属于冠状病毒科,包含四个属,即α冠状病毒、β冠状病毒、γ冠状病毒和δ冠状病毒。SARS-CoV-2 属于β冠状病毒属 [4] 。与所有冠状病毒一样,SARS-CoV-2 是一种正链、不分节段 RNA 病毒。冠状病毒的基因组是所有 RNA 病毒中最大的,范围为 27–32 kD [5] 。SARS-CoV-2 感染的临床特征与 SARS 和 MERS 相似。 SARS- CoV-2 感染的常见症状包括发烧、疲劳、干咳和呼吸困难,可能发展为急性呼吸窘迫综合征 (ARDS) 并导致死亡 [6] 。SARS-CoV-2 具有高度传染性,已证明可通过污染物、咳嗽和感冒飞沫以及人与人接触传播 [2] 。一些预防策略包括经常用肥皂和水或含酒精的洗手液洗手,咳嗽和打喷嚏时捂住口鼻,避免与身体不适的人密切接触。如果患者生病,建议在家自我隔离 [7] 。目前,预防 COVID-19 的疫苗正在研发中,而氯喹、瑞德西韦、洛匹那韦和利托那韦等化学实体已在细胞研究和临床试验中显示出有希望的结果(ClinicalTrials.gov:NCT04283461])[8、9]。本综述重点关注重新利用的小分子作为 COVID-19 的治疗干预措施,以及对病毒和宿主的主要目标的了解。
摘要:梭状芽胞杆菌的差异是一种厌氧形成孢子的革兰氏阳性细菌。C。在三个不同的抽样时间中研究了三个临床组的差异托架和16S rDNA培养:炎症性肠病(IBD)患者,C。Dififile感染(CDI)患者和医护人员(HCWS)(HCWS)。多样性分析是在三个临床组,正和负梭状芽胞杆菌组和三个分析期间实现的。关于这三个临床组,β多样性测试显示它们之间存在显着差异,尤其是HCW组和IBD组之间以及IBD患者和CDI患者之间的差异。辛普森指数(偶数)在两个临床组(HCW和IBD)之间显示出显着差异。在IBD患者组(Sutterella,agathobacter)和CDI患者组(肠球菌,梭状芽胞杆菌)中,几个属属属属构成显着不同。关于阳性和负甲状腺菌的差异托架基团,β多样性测试显示出显着差异。Shannon,Simpson和Invsimpson索引在两组之间显示出显着差异。几个属的阴性组(Agathobacter,sutterella,anaerostipes,oscillospira)和阳性组(肠球菌,肠杆菌,肠杆菌科和肠杆菌_GE)中的几个属的相对患病率显着不同。在C.差异阳性载体中检测到微生物群。需要进行更多的实验来测试此微生物群,以查看其对C.差异感染的影响。
现有的关于裂纹止裂的争议与标准无关(方程 3A 和 3B),而是由于动态分析的缺乏以及对 、 和 的相对贡献的不确定性。dA dA dA 在 SSC-242 [3] 中,Kanninen 对有限尺寸楔形载荷矩形 DCB 试件的扩展和止裂进行了完全动态分析。该分析表明,动能释放率 - dTD 与该试件扩展后期的应变能释放率 - dUD 相当。还发现 - dUD 和静态计算值之间存在很大差异,看来动态效应一般不能忽略。
这些模块探索了加拿大温室气体排放的主要来源。他们检查能源和能源系统以及能源需求和使用。parthecipant将对主要排放减少挑战的关键挑战和机会在净零的道路上的位置,例如资源扩展和加工,电力传输和传输,制造,运输,商业和残留建筑物,林业和农业以及农业以及废物管理等领域。还将检查私营部门的领导。与其他模块中一样,随之而来的是,与concipants的作品相关的工作,既可以影响政府歌剧和更广泛的加拿大背景。
我们从电力属和市场到网络和客户问题的市场涵盖了整个行业。,我们还对来自电力行业有直接兴趣的各个部门的其他几个企业和业务伙伴也有付力。We stand for The vision of the European power sector is to enable and sustain: - A vibrant competitive European economy, reliably powered by clean, carbon-neutral energy - A smart, energy efficient and truly sustainable society for all cizens of Europe We are commi(ed to lead a cost-effecve energy transion by: invesng in clean power generaon and transion-enabling soluons, to reduce在世纪中期,排放和vely逐渐成为中性的碳,同时考虑到不同的恒星ng点和对技术的关键转换的商业可用性;这包括增加了可再生能源的使用,digitalisa的使用,需求侧响应以及网格的加强,以便它们可以作为pla*orms以及为客户,ci es and communi的推动者和推动者;通过将电力作为运输,Hea Ng和Industry工具的变换来加速其他经济领域的能源转换;将可持续性嵌入我们价值链的所有部分,并采取措施支持EXIS NG资产的转换为零碳社会; Innova ng发现CU,NG-EDGE业务模型,并开发出必不可少的突破性技术,以使我们的行业能够领导这一转移。
未充分利用/孤儿豆科植物在干旱和极度饥饿时期为资源匮乏的农村人口提供粮食和营养安全,从而挽救了数百万人的生命。豆科植物是第三大开花植物科,约有 650 个属和 20,000 个物种,分布在全球。有各种富含蛋白质的可食用豆科植物,如大豆、豇豆等;然而,由于需求不断增加,它们的消费率远远高于生产率。全球日益增长的需求从动物性蛋白质饮食转向素食性蛋白质饮食也加速了对它们的需求。在这种情况下,未充分利用的豆科植物为粮食安全、营养需求和农业发展提供了巨大的潜力。据报道,许多已知的豆科植物,如 Mucuna spp.、Canavalia spp.、Sesbania spp.、Phaseolus spp. 等,都含有相当数量的蛋白质、必需氨基酸、多不饱和脂肪酸 (PUFA)、膳食纤维、必需矿物质和维生素以及其他生物活性化合物。考虑到这一点,当前的审查重点是发现未充分利用的豆科植物作为食物、饲料和药用化学品来源的潜力,以便为解决营养不良相关问题和维持全球豆类需求提供基线数据。关于未充分利用的豆科植物的信息很少,而且仅限于具有地方或传统意义的特定地理区域。大约有 700 个属和 20,000 个物种有待驯化、改良和主流化。需要在研究、育种和开发方面做出重大努力,将现有的经过精心挑选、有前途的作物地方品种转变为具有广泛适应性和经济价值的类型
摘要:在非洲,由于包括Anaplasma,Ehrlichia,Rickettsia和Coxiella物种在内的壁虱传播病原体,tick虫仍然是改善牲畜行业的主要障碍。在这里进行了全身审查和荟萃分析,并强调了这些tick传播病原体在非洲壁虱中的分布和流行。在五个电子数据库中搜索了相关出版物,并使用包含/排除标准选择,分别在定性和定量分析中包括138和78篇论文。大多数研究都集中在罗克 - 埃特西亚(Ricktsia Africae)(38个研究),其次是埃里希氏症反刍动物(27项研究),Coxiella burnetii(20项研究)和Anaplasma缘缘(17项研究)。使用随机效应模型进行比例的荟萃分析。对于立克spp获得了最高的患病率。(18.39%; 95% CI: 14.23–22.85%), R. africae (13.47%; 95% CI: 2.76–28.69%), R. conorii (11.28%; 95% CI: 1.77–25.89%), A. marginale (12.75%; 95% CI: 4.06–24.35%), E. ruminantium (6.37%; 95%CI:3.97–9.16%)和E. Canis(4.3%; 95%CI:0.04–12.66%)。C. burnetii的患病率较低(0%; 95%CI:0-0.25%),Coxiella spp的患病率更高。(27.02%; 95%CI:10.83–46.03%)和类似Coxiella的内共生体(70.47%; 95%CI:27-99.82%)。识别了tick属,tick物种,乡村和其他变量的影响,并强调了心脏水中rhipicephalus tick的流行病学;每种立克属物种的属性,用于不同的tick属; A. Marginale,R。非洲和Coxiella的主体分布在tick虫中的内共生体和非洲硬滴答中的C. burnetii分布较低。
在开发高通量测序仪后,环境原核生物群落通常是通过在16S域上用遗传标记来描述的。然而,由于底漆的选择和读取长度,简短读取测序遇到了系统发育覆盖率和分类分辨率的局限性。在这些关键点上,纳米孔测序(一种适用于长读的元编码的上升技术)被低估了,因为其每读的错误率相对较高。在这里,我们比较了模拟社区中的原核生物群落结构和两个对比的红树林遗址的52个沉积物样本,由16SV4-V5标记上的短读描述(Ca。0.4kpb)通过Illumina测序分析(Miseq,v3),由长读细菌对细菌的描述几乎完整16s(Ca。1.5 kpb)由牛津纳米孔(Minion,R9.2)分析。短读和长阅读从模拟中检索了所有细菌属,尽管两者都显示出与所期待的比例相似的偏差。从沉积物样品中,具有覆盖范围的读数稀有性,在单例过滤后,共同恩赐和Procrustean测试表明,从短读和长长读取的细菌社区结构显着相似,表明位点之间的相当对比度和站点内相干的海岸方向是可比的。在我们的数据集中,分别将84.7和98.8%的短阅读分别分别分配给了相同的物种和属,而不是长阅读所检测到的物种和属。长期16的底漆特异性使其能够检测到309个家庭中的92.2%,而在短16SV4-V5检测到的448属中,有87.7%。长阅读记录了973个未检测到的额外分类单元,其中91.7%被确定为该属等级,其中一些属于11个独家门,尽管仅占长期读数的0.2%。
摘要:Dongcai以其美味的avor和营养价值而被爱。Dongcai中的微生物在其平坦,质量和安全性中起着至关重要的作用,而Dongcai的微生物群落在各个地区之间差异很大。然而,尚不清楚哪些主要的微生物在不同的传统dongcai以及它们如何影响其avor中。这项研究的目的是探索三个代表性的中国地区(Tianjin,Sichuan和Guangzhou)中传统发酵Dongcai的微生物多样性,并进一步评估其微生物功能。与最高的四川发酵的Dongcai相比,广东发酵的Dongcai的微生物多样性的多样性最低。发酵的Dongcai的主要属的分布因地区而异,但是肉欲,葡萄球菌,假单胞菌,鞘氨拟补膜,鞘氨虫,Burkholderia-Caballeronia-Paraburkholderia和Rhodococcus是普通的主要属。此外,嗜嗜血素细菌(HAB,即halomonas bacillus,virgibacillus等)和乳酸细菌(实验室,即魏森氏菌和乳杆菌)也很丰富。,Burkholderia- Caballeronia-Paraburkholderia,Rhodococcus,Sphingomonas,Ralstonia和Chromohalobacter在Sichuan样品中占主导地位。在天津样品中,乳酸杆菌,魏森氏菌,virgibacillus,肠杆菌,克雷伯氏菌和假单胞菌是最丰富的。微生物代谢功能的预测表明,碳水化合物,氨基酸,聚酮化合物,脂质和其他二次代谢物可用于生物合成。此外,这三种类型的dongcai的不同型号可能是由于以下事实:HAB和实验室的丰度与重要代谢物(例如盐,酸,氨基氮和糖)的量显着正相关。这些结果有助于我们理解不同类型的Dongcai和它们所包含的微生物之间的联系,并将为微生物群落与半发作泡菜中的微生物群落之间的关系提供参考。