Results: Through forward and reverse MR analyses, we found the risk of lymphoid leukemia was signi fi cantly associated with the abundance of phylum Cyanobacteria, order Methanobacteriales, class Methanobacteria, family Peptococcaceae, family Methanobacteriaceae, and genera Lachnospiraceae UCG010, Methanobrevibacter, Eubacterium brachy组和丁二维伯里奥(Butyrivibrio)。The risk of myeloid leukemia was signi fi cantly associated with the abundance of phylum Actinobacteria, phylum Firmicutes, order Bi fi dobacteriales, order Clostridiales, class Actinobacteria, class Gammaproteobacteria, class Clostridia, family Bi fi dobacteriaceae, and genera Fusicatenibacter, Eubacterium Hallii Group,Blautia,Collinsella,Ruminococcus Gauvreauii组和双杆菌。Hodgkin淋巴瘤的风险与丰富的梭子座Vadinb60组,peptocococus属和Ruminococcaccaceae UCG010属显着相关。恶性等离子体细胞肿瘤的风险与丰富的Romboutsia属和卵细菌的丰度显着相关。弥漫性大B细胞淋巴瘤的风险与丰富的Erysipelatoclostridium和Eubacterium coprostanolostanoligenes组显着相关。成熟T/NK单元的风险
水果形状是西瓜的重要特征。以及具有不同果实形状的西瓜的根际和内生微生物的组成也不清楚。分析了为了阐明西瓜水果形成的生物学机制,分析了椭圆形(OW)和西部西瓜(CW)之间的根际和内生微生物群落组成。结果表明,除根际细菌丰富度(p <0.05)外,根际和内生微生物(细菌和乐趣)多样性在OW和CW之间具有统计学意义(p> 0.05)。然而,内生微生物(细菌和真菌)组成显着差异。首先,芽孢杆菌,杜鹃花,cupriamonas和devosia是圆形西瓜(CW)的橄榄球中独特的土壤多元型细菌属。相比之下,Nocardioides,ensifer和saccharomonospora是椭圆形西瓜根际(OW)的根际的特殊土壤主要细菌属。同时,头孢菌,新杂质孢子虫,菲拉斯尼普尔和丘疹是圆形西瓜(CW)的根茎中独特的土壤主要真菌属;相比之下,Acronium,cladosporium,Cryptocococococococococococococuseae,Sodiomyces,Microascus,Conocybe,Sporidiobolus和Acromonium是卵形水甲基(OW)的根茎中独特的土壤主导的真菌属。所有上述结果表明,具有不同果皮形状的西瓜精确地募集了根茎和茎中的各种微生物。Additionally, Lechevalieria , Pseudorhodoferax , Pseudomonas , Massili a, Flavo- bacterium , Aeromicrobium , Stenotrophomonas , Pseudonocardia , Novosphingobium , Melittangium , and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW;相比之下,falsirhodobacter,kocuria和kineosporia是OW茎中的特殊内向属属。此外,lectera和fusarium是CW茎中独特的主导性内生真菌属。相比之下,仅尾孢子是OW茎中的特殊主导性内生真菌属。同时,可以推测不同根磷和内生微生物的富集与西瓜水果形状有关。
在建筑物外发现的大气中的空气称为外部空气。外部空气的主要菌群是真菌。真菌的两个常见属是孢子菌素。除了这两个属外,在Airare aspergillusand,externaria,phytophthora ysipheer中发现了其他属。室内空气还包含大孢子,酵母菌的腹腔,菌丝体的碎片和霉菌的分生孢子。微生物的数量和种类可能会因人口密度而异。
根据联邦紧急事务管理局 (FEMA) 发出的制定 90 天计划的指令,本文件概述了 FEMA 资助的波多黎各电力系统项目的关键后续步骤和进展情况。2021 年 6 月 1 日,LUMA 全面负责波多黎各电力管理局 (PREPA) 的 T&D 系统,如 PREPA、波多黎各公私合作管理局 (P3A) 和 LUMA 之间的运营和维护协议 (OMA) 中所述。服务期开始时,PREPA 将工作重点重新放在发电和水坝、水力和灌溉资产类别的项目上;而输电、配电、变电站、IT/电信、建筑和环境资产类别的项目(“T&D 项目”)已过渡到 LUMA 并由其负责。 2023 年 7 月 1 日,GeneraPR 全面负责 PREPA 的发电系统,如 PREPA、P3A 和 Genera 之间的 OMA 中所述。服务期开始时,PREPA 将工作重点重新放在水坝、水力和灌溉资产类别的项目上;而发电资产类别的项目(“发电项目”)则已过渡到 GeneraPR 并由其负责。这份 90 天计划提供了有关 PREPA、LUMA 和 Genera 之间协调领域的信息,以及每个领域特定的重点领域。
真菌是森林中重要的生态剂,有助于提高整个生态系统的韧性,以应对环境挑战。地中海森林中的栖息地中最受气候变化和害虫传播所威胁的栖息地中,这最终使他们陷入了衰落的螺旋式衰落。因此,土壤和树木的菌根组成的变化可能与森林的健康状况相关,并且在地中海树种中几乎没有解决。在这项工作中,来自西班牙木磨坊的西班牙森林中落下的根际和树皮样品。(Chestnut),Quercus ilex L.(Holm Oak),Q. Suber L.(Cork Oak)和Q. Pyrenaica Willd。(比利亚橡树)。真菌群落的特征是通过其跨编码。在土壤中发现了较高的多样性,在土壤中,有674属属于15个门,在土壤中,属于420属,树木中有6个门。真菌属不包括森林的土壤和树木不包括致病生物,从而阻止了某些属属与森林下降的关联。alpha多样性也与健康状况或样本类型无关,因为它仅在无症状栗子土壤中增加,而在其他任何分析的树种中都没有增加。在无症状的树中发现的一些差异丰富的属,例如metarhizium,assergillus,Russula,Chaetomium,mortierella或clodophialophora,可能与对衰落的病原体的生物控制有关。最后,在土壤和树皮中,健康状况与真菌的主要生活方式之间没有发现任何关系,这可以解释为在土壤和植物真菌群落之间进行串扰之后对逆境的韧性标志。
结果:从怀孕生殖道(污染控制)的外表面培养了87种独特的细菌,并从妊娠组织培养的12种细菌物种。10头牛中有6个(60%)在怀孕子宫内的至少一个位置表现出细菌生长。对于元学结果(16S rRNA基因测序),鉴定出低靶向微生物生物量。对检测到的扩增子序列变体(ASV)的分析表明,有:(1)属在外表面和怀孕子宫内都普遍存在; (2)在外表面上盛行但未检测到的属,或者在怀孕子宫内未被检测到非常低的患病率; (3)未检测到的属或在外表面患病率较低但在怀孕子宫内的患病率相对较高。
1至5月23日的订单,能量局还指示Luma,属和波多黎各电力授权委员会(“ PrepA”)应在“从三(3)天内提交,从三(3)天内,所有工厂和支持材料用于制定其各自的2024财年预算提案,以所有的方式与所有面式完整链接,并链接所有Ecceplas and Excepelsepledssepleds and crepledsepledsepledsseplesssepledsseplessepledsseplesseplessseplessseepssepledsepledsseplsseetsseetsepledsseepsseplessseep。 2023年5月26日,Luma符合2023年5月23日的解决方案和命令,并提交了支持工作人员,从而根据5月23日订单的该部分提交了拟议的年度T&D预算的支持工作台。2 PrepA和属通过5月23日的订单提交了各自的答复,该订单通过日期为6月2日和6日,2023年(属)和2023年6月6日(PrepA)的单独提交。
在科学预测中迫切需要在全球变化下经济必不可少的森林物种的分布模式变化,大规模的空间建模是至关重要的工具。使用通过地理信息系统(GIS)获得的多样性模式指标和其他数据以及从已发表数据获得的莫拉西种类的空间数据,我们定量研究了中国Moraceae中属的空间多样性模式。结果表明,具有多种物种的斑块的丰富度,多样性指数和总形状指数明显高于单型属的斑块。单型属没有空间多样性,在空间多样性模式中没有分布。Maclura的空间分布最集中,并且是中国羊毛科中最低的分布面积。斑块的数量和总面积最小,而最重要的贴片指数最高。Maclura没有空间多样性。s treblus的斑块丰度最高。streblus的斑块数量最少,分布的总面积,最低的空间分布和较小的总形状指数,表明其浓缩分布。香农多样性指数(SHDI)和辛普森多样性指数(SIDI)的值最高,空间分布是物种较少的属中最多样化的。Streblus的贴片类型的值比其他属的值更大,但是斑块的数量很少,总形状索引较低。这些地区大多数都是山区。streblus主要分布在云南,广西西部,海南和中部的南部和广东南部。温度随升高而降低,为狭窄的属属提供了不同的环境条件。在中国的莫拉西(Moraceae)中,ficus的空间分布是最多样化的,斑块,斑块类型,总形状指数,SHDI和SIDI值的数量最多。五花体的空间多样性可以用作中国羊毛科的保护区。
图 1. 满足 RPS 的综合进展 ...................................................................................................... 7 图 2. 预计通过签约项目实现州目标 ...................................................................................... 8 图 3. 根据修订的计算方法,2022 年 RPS 的变化 ........................................................................ 14 图 4. 加权等效强制停运系数 ............................................................................................. 17 图 5. 2022 年可再生能源百分比(全州) ............................................................................. 18 图 6. KIUC 按可再生燃料类型划分的历史 RPS(所有值均基于计算 RPS 的新方法) ............................................................................................................. 19 图 7. HECO 公司按资源划分的可再生能源发电百分比 ............................................................................. 21 图 8. 电表后可再生能源的增长(HECO 公司) ............................................................................. 21 图 9. 2022 年岛屿和全州的能源发电结构 ............................................................................................. 22 图10. KIUC 按可再生燃料类型划分的历史 RPS ...................................................................................... 26 图 11. HECO 公司按资源划分的可再生能源发电百分比 ...................................................................... 27 图 12. 预计的 RPS 实现情况,假设合同项目完成 ............................................................................. 29 图 13. 预计的 RPS 发电量,假设合同项目完成 ............................................................................. 30 图 14. 2006 年“40 天降雨”年的平均日容量系数 ............................................................................. 33 图 15. 未来欧胡岛电力系统的历史最低太阳活动(2008 年 12 月)............................................................................. 34 图 16. 2030 年欧胡岛可再生能源区 ............................................................................................. 37
1科学与研究系,Velleja Research,20125年米兰,意大利2米兰2,Insubria大学医学与外科系,意大利21100,意大利Varese; luigina.guasti@uninsubria.it(l.g。) 3 U.O.S.D. PMA Conegliano医院,意大利特雷维索31100 4 U.O.C. Farmacia Pieve di Soligo, 31100 Treviso, Italy 5 IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy 6 IVIRMA Global Research Alliance, B-WOMAN, 00197 Rome, Italy 7 Department of Biomedicine and Prevention, University of Rome, Tor Vergata, 00185 Rome, Italy 8 Department of生物分子科学,Urbino Carlo Bo大学,意大利Urbino 61029; Alexander.bertuccioli@uniurb.it 9 Medistat,Mario Negri Institute校友会(MNIAA)临床流行病学和生物统计学单位,20156年意大利米兰 *通信:F.Dipierro@vellejaresearch.com;电话。 : +39-34955276631科学与研究系,Velleja Research,20125年米兰,意大利2米兰2,Insubria大学医学与外科系,意大利21100,意大利Varese; luigina.guasti@uninsubria.it(l.g。)3 U.O.S.D. PMA Conegliano医院,意大利特雷维索31100 4 U.O.C. Farmacia Pieve di Soligo, 31100 Treviso, Italy 5 IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy 6 IVIRMA Global Research Alliance, B-WOMAN, 00197 Rome, Italy 7 Department of Biomedicine and Prevention, University of Rome, Tor Vergata, 00185 Rome, Italy 8 Department of生物分子科学,Urbino Carlo Bo大学,意大利Urbino 61029; Alexander.bertuccioli@uniurb.it 9 Medistat,Mario Negri Institute校友会(MNIAA)临床流行病学和生物统计学单位,20156年意大利米兰 *通信:F.Dipierro@vellejaresearch.com;电话。 : +39-34955276633 U.O.S.D.PMA Conegliano医院,意大利特雷维索31100 4 U.O.C.Farmacia Pieve di Soligo, 31100 Treviso, Italy 5 IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy 6 IVIRMA Global Research Alliance, B-WOMAN, 00197 Rome, Italy 7 Department of Biomedicine and Prevention, University of Rome, Tor Vergata, 00185 Rome, Italy 8 Department of生物分子科学,Urbino Carlo Bo大学,意大利Urbino 61029; Alexander.bertuccioli@uniurb.it 9 Medistat,Mario Negri Institute校友会(MNIAA)临床流行病学和生物统计学单位,20156年意大利米兰 *通信:F.Dipierro@vellejaresearch.com;电话。: +39-3495527663