2024年,忠利集团与联合国开发计划署保险与风险融资基金发布联合研究报告《增强东南亚中小微企业复原力》,重点研究泰国和马来西亚的部分价值链。报告提出了一种替代方法,以识别中小微企业的风险和需求,开发风险管理和保险服务,并向当地企业界提供这些解决方案。研究发现,中小微企业占东南亚企业的大多数,占泰国所有企业的99.6%,占马来西亚所有企业的97.4%。它们是社会经济发展的支柱和驱动力。研究还强调,了解中小微企业价值链特征、风险状况和保护需求的差异对于提供合适的保险解决方案至关重要。
该立场论文通过提高培训数据超出培训数据的能力来探讨人工智能的进步,这是对抽象和推理语料库(ARC)任务的关键要求。受到历史算法挑战(例如邦加德问题)的启发,ARC任务需要模式进行综合和逻辑推理,从而将AI推向了更具灵活性,类似人类的智能。我们调查了Dreamcoder,一种神经符号系统,以及大型语言模式在ARC中的作用。我们强调了对人类试验和合成数据增强的启发的需求,并提出了使用数学启发的神经体系结构进行逻辑推理的管道。这项工作强调了ARC如何指导AI研究,弥合了机器学习与数学发现之间的差距。
将深度学习扩展到大量,多样化的互联网数据已经在视觉和自然语言的理解和产生中产生了极大的一般能力。但是,在机器人技术中收集的数据仍然稀缺和挑战,看到机器人学习难以获得类似的一般能力。从视频(LFV)方法中学习的有希望的学习旨在通过使用大型互联网视频数据来增强传统机器人数据来解决机器人数据瓶颈。此视频数据提供了有关身体行为和世界潜在物理学的广泛基础信息,因此对于通才机器人来说可能是非常有用的。在本调查中,我们介绍了LFV新兴领域的详细概述。我们概述了基本概念,包括LFV的好处和挑战。我们提供了当前方法的综合评论,以从大规模的互联网视频中提取知识,解决LFV中的关键挑战,并通过使用视频数据来提高下游机器人和强化学习。该调查以对LFV的挑战和机遇的批判性讨论结束。在这里,我们主张可扩展的基础模型方法,这些方法可以利用可用的互联网视频范围来改善机器人策略和动态模型的学习。我们希望这项调查能够为LFV的进一步研究提供信息,并推动发展通用机器人的进步。
摘要。大西洋子午翻转循环(AMOC)在塑造北大西洋地区及其他地区的气候条件方面起着至关重要的作用,其未来的稳定性是一个令人关注的问题。虽然对面对地表淡水强迫(FWF)的AMOC稳定性进行了彻底的研究,但其对变化CO 2的库里库反应在很大程度上没有探索,从而无法全面了解其在全球变暖下的稳定性。在这里,我们使用地球系统模型探索AMOC的稳定性,因为面对北大西洋和大气CO 2在180至560 ppm之间的FWF的组合变化。我们找到了与定性不同的对流模式相关的四个不同的AMOC状态。Apart from an “Off” AMOC state with no North Atlantic deep-water formation and a “Modern”-like AMOC with deep water forming in the Labrador and Nordic seas as observed at present, we find a “Weak” AMOC state with convection occurring south of 55° N and a “Strong” AMOC state characterized by deep-water formation ex- tending into the Arctic.在整个CO 2的范围内,关闭状态和弱状态是稳定的,但仅适用于正FWF。对于一系列正FWF,现代状态在高于前工业的CO 2下是稳定的,仅对于负FWF而言,对于较低的CO 2。最后,强度仅对高于280 ppm的CO 2和FWF <0.1 SV才稳定。Genally,AMOC的强度随着CO 2的增加而增加,并且随着FWF的增加而减小。我们的AMOC稳定性景观有助于解释寒冷气候中的AMOC不稳定性,尽管它并不直接适用于百年纪念时间尺度上对全球变暖的根本性瞬时反应,但它可以提供有关AMOC可能长期命运的有用信息。例如,虽然在工业前的范围下,AMOC在模型中是可以单位的,但对于高于400 ppm的CO 2浓度,OFF状态也变得稳定,这表明在较温暖的气候中的AMOC关闭可能是不可逆转的。
摘要:需要长时间需要持续关注的任务是几十年来认知疲劳研究的焦点,这些任务包括空中运输控制,手表保持,行李检查等。最近对精神疲劳生理标志物的研究表明,存在标记,这些标记范围延伸到所有个人和所有类型的警惕任务中。这表明可以构建一个脑电图模型,该模型检测到这些标记物以及随后的任何任务(即任务生成模型)和任何人(即跨派对模型)的随后警惕性降低。到目前为止,尚未构建或测试任务生成的脑电图跨参与模型。在这项研究中,我们探讨了任务生成脑电图跨参与模型的创建和应用,以检测看不见的任务和看不见的个体的警惕性降低。我们利用三种不同的模型来研究这种能力:多层感知神经网络(MLPNN),采用了从传统的EEG频率频段提取的光谱特征,临时卷积网络(TCN),以及TCN自动设备(TCN-ae),以及这些两个TCN模型,以及使用这些eeg eeg at eeg at i.值。MLPNN和TCN模型都达到了比随机机会更高的精度(50%),而MLPNN的表现最佳,其7倍CV平衡精度为64%(95%CI:0.59,0.69),并且验证精度比14名参与者中9个参与者中的9个比随机机会大。这个发现的示例表明,即使是从看不见的个人和看不见的任务中脑电图中,也可以使用脑电图对警惕性降低进行分类。
摘要:视觉语言动作(VLA)模型的最新进展可以使机器人根据语言或基于目标的说明执行广泛的任务。这些VLA模型通常将文本和图像编码为脱节令牌,从而生成与给定指令保持一致的动作。这要求VLA模型同时执行视觉语言理解和精确的闭环控制,从而给他们带来重大挑战,以使其概括为新环境。然而,对比的预训练的VLM,例如剪辑,已经具有视觉对齐能力,这些功能被当前的VLA模型未被充分利用。在本文中,我们提出了早期的Fusion VLA(EF-VLA),这是一种新颖的VLA架构,通过执行早期融合来利用Clip的视觉理解,在传递到变压器政策之前,提取与任务指导相关的细粒度视力语言令牌。ef-vla保持VLM冷冻,允许其有效执行看不见的任务而无需进行精细调整,这通常会降低概括能力。仿真和现实世界实验表明,EF-VLA在不同任务上的最先进的VLA模型优于最先进的VLA模型,并且在看不见的环境中具有重要的概括能力。
摘要:了解机器人必须在给定开放式任务中的非结构化环境中操纵对象。但是,现有的视觉负担预测方法通常仅在一组预定义的任务上手动注释的数据或条件。我们介绍了无监督的负担蒸馏(UAD),这是一种将负担知识从基础模型提炼到任务条件的辅助模型的方法,而无需任何手动注释。通过利用大型视觉模型和视觉模型的互补优势,UAD自动注释了一个具有详细的<指令,Visual Profiseance> Pairs的大规模数据集。仅在冷冻功能上训练一个轻巧的任务条件解码器,尽管仅在模拟中接受了对渲染的对象的培训,但UAD对野外机器人场景和各种人类活动表现出显着的概括。UAD提供的可负担性作为观察空间,我们展示了一项模仿学习政策,该政策证明了有希望的概括,可以看到对象实例,对象类别,甚至在培训大约10次演示后进行任务指令的变化。项目网站:https://gpt-affordance.github.io/。
摘要:构建有效的模仿学习方法,使机器人能够从有限的数据中学习,并且仍然在不同的现实世界环境中概括是一个长期存在的问题。我们提出了Equibot,一种可用于机器人操纵任务学习的强大,有效且可推广的方法。我们的方法结合了SIM(3) - 等级神经网络体系结构与扩散模型。这确保了我们所学的政策对规模,轮换和翻译的变化是不变的,从而增强了它们对看不见的环境的适用性,同时保留了基于扩散的政策学习的好处,例如多种方式和鲁棒性。我们在一组6项模拟任务上显示,我们提出的方法减少了数据要求并改善对新方案的概括。在现实世界中,有10个移动操作任务的10个变体,我们表明我们的方法可以轻松地概括为每项任务中仅5分钟的人类演示的新颖对象和场景。网站:https://equi-bot.github.io/
摘要 — 将神经生理学的先验知识整合到神经网络架构中可提高情绪解码的性能。虽然许多技术都强调学习空间和短期时间模式,但对捕捉与情绪认知过程相关的重要长期背景信息的重视程度有限。为了解决这一差异,我们引入了一种称为情绪变换器 (EmT) 的新型变换器模型。EmT 旨在在广义跨受试者脑电图情绪分类和回归任务中表现出色。在 EmT 中,脑电图信号被转换成时间图格式,使用时间图构造模块 (TGC) 创建一系列脑电图特征图。然后提出了一种新颖的残差多视图金字塔 GCN 模块 (RMPG) 来学习该系列中每个脑电图特征图的动态图表示,并将每个图的学习到的表示融合成一个标记。此外,我们设计了一个时间上下文变换器模块 (TCT),它有两种类型的标记混合器来学习时间上下文信息。最后,任务特定的输出模块 (TSO) 生成所需的输出。在四个公开数据集上的实验表明,EmT 在 EEG 情绪分类和回归任务中都取得了比基线方法更高的结果。代码可在 https://github.com/yi-ding-cs/EmT 上找到
1.2 挑战与影响 ARC 公开测试中,人类的平均表现准确率超过 60%[ 3 ]。相反,最有能力的模型利用 SOTA LLM[ 4 ] 也只能达到 50% 以下的准确率。考虑到大量的预训练数据,当前人工智能与人类之间的差距更加明显。对 ARC 竞赛解决方案的研究可以为我们对人类思维中的直觉和推理过程进行建模提供重要见解,促进新型人工智能范式的构建。同时,“[至少,解决 ARC-AGI 将产生一种新的编程范式[ 5 ]”,只需展示几个输入输出示例,就可以让没有编码经验的人进行程序合成。2 竞赛细节 数据集 ARC Prize 竞赛提供三个数据集:公共训练集、公共评估集和私有评估集。公共训练集和公共评估集均包含 400 个任务文件,而私有评估集包含 100 个任务文件。每个任务有 2 到 10 对(通常为 3 个)示例和 1 到 3 对(通常为 1 个)测试[2, 6]。指标 我们可以通过两种方法评估性能: 1)像素正确性 - 正确推断的像素占总数的百分比; 2)正确/不正确 - 推断的输出在形状、颜色和位置方面是否与任务的测试输出相匹配。竞赛使用第二种方法评估提交内容[6]。
