基于量子力学的抽象随机数生成器(RNG)由于其安全性和与常规发电机相比的安全性和不可预测性而引人注目,例如pseudo-random编号生成器和硬件随机数字生成器。这项工作分析了可提取量的随机性的演变,并增加了希尔伯特空间维度,状态制备子空间或测量子空间中的一类半脱位独立量子RNG,其中界定状态的重叠是核心假设,是基于准备和测量方案的核心假设。我们进一步讨论了这些因素对复杂性的影响,并在最佳场景上得出结论。我们研究了定义各种输入(状态准备)和结果(测量)子空间的定义各种输入(状态准备)的通用情况,并讨论最佳场景以获得最大的熵。对几种输入设计进行了实验测试,并分析了其可能的结果布置。我们通过考虑设备的缺陷来评估他们的性能,尤其是检测器的后脉冲效果和黑暗计数。最后,我们证明了这种方法可以增强系统熵,从而导致更可提取的随机性。
量子分类和假设检验(状态和通道区分)是两个紧密相关的主题,主要区别在于前者是数据驱动的:如何将量子态 ρ(x) 分配给相应的类 c(或假设)是从训练期间的示例中学习的,其中 x 可以是可调的实验参数,也可以是“嵌入”到量子态中的经典数据。该模型是否具有泛化能力?这是任何数据驱动策略中的主要问题,即即使对于以前从未见过的状态,也能预测正确的类别的能力。在这里,我们通过证明量子分类器的准确性和泛化能力取决于量子态空间 Q 与经典参数空间 X 或类空间 C 之间的(Rényi)互信息 I(C:Q) 和 I2(X:Q),建立了量子分类与量子信息论之间的联系。基于上述特征,我们展示了 Q 的不同属性如何影响分类准确性和泛化,例如希尔伯特空间的维数、噪声量以及通过池化层等方式从 X 中忽略的信息量。此外,我们引入了信息瓶颈原理的量子版本,使我们能够探索准确性和泛化之间的各种权衡。最后,为了检验我们的理论预测,我们研究了 Ising 自旋链的量子相的分类,并提出了变分量子信息瓶颈方法来优化经典数据的量子嵌入以利于泛化。
摘要。以下研究重点是主要方面之一,即对社交媒体上的厌女症和性别歧视的描述及其对社会的看法和性别关系的影响。在语音中的权力关系中,这是由罗宾·拉科夫(Robin Lakoff)和黛博拉·坦宁(Deborah Tannen)开发的理论,该研究采用了性别差异的口头结构。这些问题随着数字时代的黎明即时传输信息并共享各种内容而加剧了这些问题;因此,社交网络增加了性别歧视言论和网络欺凌的使用。结合了调查的本能以及对现实的猜测的想象力,社交网络与#METOO标签的痛苦与#METOO标签的痛苦相结合,并同时通过分布式滥用来使男性特权的积极进取,以使男性特权的侵略性更高。这是该研究引起共鸣的重要性,即在涉及性别方面以及在线骚扰方面进行故意改变当前语言实践的转变。
基于对亚洲地区害虫状况、危害和现行做法的调查,制定了针对 B. dorsalis 的综合害虫管理 (IPM) 策略。调查结果表明,B. dorsalis 是一个主要问题,因为它在大多数参与国造成了严重损害。当前的 IPM 策略涉及多种控制策略,但往往过度依赖化学农药。基于行为的监测和控制措施由于易于使用和成本效益高而在该区域广泛使用,是 IPM 策略的关键组成部分。不育昆虫技术的应用虽然环保、可持续且与 IPM 兼容,但由于运营成本高、政府政策无效和社会接受度低而受到限制。公共知识和技术转让、培训和实践指导、相关利益相关者社区参与、接受和合作是可持续和成功针对 B. dorsalis 进行 IPM 的关键杠杆。更多旨在开发非化学控制策略和生物农药的举措和研究工作将优化现有的 IPM 策略。最后,应采取有效的检疫和植物检疫措施,提高边境生物安全,从而在全球气候变化的情况下拦截和遏制桔小实蝇扩大其现有地理边界的风险。
1 美国加利福尼亚州欧文市加利福尼亚大学欧文分校神经病学系;2 比利时鲁汶大学医院神经病学系;3 比利时鲁汶鲁汶大学肌肉疾病和神经病变实验室;4 加拿大安大略省多伦多大学健康网络 Ellen & Martin Prosserman 神经肌肉疾病中心;5 加拿大安大略省多伦多大学;6 美国德克萨斯州奥斯汀市奥斯汀神经肌肉中心;7 美国弗吉尼亚州里士满市弗吉尼亚联邦大学神经病学系;8 美国加利福尼亚州卡尔斯巴德市南加州神经病学中心;9 西班牙巴塞罗那圣十字圣保罗医院神经病学系神经肌肉疾病科;10 西班牙巴塞罗那圣保罗生物医学研究所;11 比利时根特市 argenx; 12 意大利米兰卡洛贝斯塔神经学研究所 IRCCS 神经免疫学和神经肌肉疾病系;13 德国柏林夏里特医学院神经病学和神经科学临床研究中心;14 法国马赛蒂莫内医院大学神经肌肉疾病和 ALS 参考中心
摘要 - 通过演示编程(PBD)是一种通过演示所需行为来编程机器人操纵技巧的技术技术。但是,大多数现有的方法要么需要广泛的演示,要么无法推广其最初的演示条件。我们介绍了扩散PBD,这是一种新颖的PBD方法,它使用户能够通过利用预先训练的视觉基础模型捕获的表示形式来综合单个演示中的可通用的机器人操纵技能。在演示时间,手和对象检测先验用于从锚定的人类示范中提取路点,以参考场景中的参考点。在执行时,利用了预训练的扩散模型的功能,以确定新观测中的相应参考点。我们通过一系列真实的机器人实验来验证这种方法,表明扩散PBD适用于广泛的操作任务,并且具有强大的能力,可以推广到看不见的对象,摄像头视图和场景。可以在https://diffusion-pbd.github.io
客观和影响声明。从两光子显微镜(下午2点)的血管分割的大脑血管造影在血液动力学分析和疾病诊断中具有重要的应用。在这里,我们开发了一种可概括的深度学习技术,用于准确2pm从多个下午2点设置获得的小鼠大脑中相当大区域的血管分割。该技术在计算上是有效的,因此非常适合大规模神经血管分析。简介。从下午2点开始血管造影的血管分割是脑血管血液动力学建模的重要第一步。基于深度学习的现有分割方法要么缺乏从不同成像系统中概括数据的能力,要么在大规模血管造影上计算上不可行。在这项工作中,我们通过一种可以推广到各种成像系统的方法来克服这两个局限性,并且能够分割大规模血管造影。方法。我们采用了一个具有损失函数的计算上有效的深度学习框架,该损失函数结合了网络输出的平衡二进制跨性损失和总变化正则化。在从尺寸为808×808×702μm的小鼠大脑中获得的实验获得的体内血管造影中,其效果得到了证明。结果。为了证明我们的框架的卓越概括性,我们从下午2点开始训练数据,并在没有任何网络调整的情况下从不同显微镜中展示了来自不同显微镜的数据的高质量分割。结论。总的来说,与最先进的艺术相比,我们的方法以每秒分段和3×更大的深度来证明10×更快的计算。我们的工作为脑血管系统提供了可概括且计算上有效的解剖建模框架,该框架由深度学习的血管分割组成,然后是图形。它为未来建模和分析血液动力学反应的道路铺平了道路,这是以前无法访问的更大的尺度。
计算双学学的最新研究趋势越来越集中于整合文本和生物实体建模,尤其是在分子和蛋白质的背景下。,以前的努力(例如Biot5)在跨越各种任务的概括方面面临着挑战,并且缺乏对分子结构的细微理解,尤其是在其文本代表中(例如,IUPAC)。本文介绍了Biot5+,这是Biot5框架的扩展,该框架是为了增强生物学研究和药物发现而定制的。biot5+结合了几种新颖特征:IUPAC名称的集成,用于分子理解,包括Biorxiv和PubChem等来源的扩展生物文本和分子数据,用于跨任务的多任务中的多任务指定调整,以及用于数值的数字处理的数值数据。这些增强功能允许Biot5+弥合分子表示之间的差距及其文本描述,从而提供了对生物实体的更全面的理解,并在很大程度上改善了对生物质量和生物序列的基础推理。该模型经过预先训练和微调,并通过大量实验,包括3种类型的问题(分类,回归,一代),15种任务和21种基准数据集,在大多数情况下表现出了显着的性能和现状的结果。biot5+因其在生物学数据中捕获复杂的关系船的能力而脱颖而出,从而有助于生物信息学和计算生物学。我们的代码可从https://github.com/qizhipei/biot5获得。
从大型2D图像收集中学习3D头先验是迈向高质量3D感知人类建模的重要一步。核心需求是一种有效的体系结构,可以很好地扩展到大型数据集和大型图像分辨率。不幸的是,现有的3D GAN由于火车相对较慢和渲染速度而难以扩展以高分辨率生成样品,并且通常必须依靠2D超分辨率网络以牺牲全球3D一致性为代价。为了应对这些挑战,我们提出了发电性高斯头(GGHEAD),该挑战在3D GAN框架内采用了最近的3D高斯剥落表示。为了生成3D表示,我们采用强大的2D CNN发电机来预测模板头网格的UV空间中的高斯属性。以这种方式,GGHEAD利用了模板的UV布局的规律性,从而实质上促进了预测非结构化的3D高斯人的挑战性任务。我们进一步提高了生成的3D表示的几何保真度,并在渲染的紫外线坐标上发生了新的总变化损失。直觉,这种正则化鼓励相邻的渲染像素应源于模板的紫外线空间中的邻近高斯人。总的来说,我们的管道可以有效地生成仅从单视2D图像观测值训练的3D头。我们的拟议框架与FFHQ上现有的3D头gan的质量相匹配,同时既快速又完全3D。结果,我们首次以1024 2分辨率证明了高质量3D一致的头的实时生成和渲染。项目网站:https://tobias-kirschstein.github.io/gghead
