扩散模型在产生各种自然分布的高分辨率,逼真的图像方面取得了巨大的成功。但是,他们的性能在很大程度上依赖于高质量的培训数据,这使得从损坏的样本中学习有意义的分布变得具有挑战性。此限制限制了它们在稀缺或昂贵的科学领域中的适用性。在这项工作中,我们引入了DeNoising评分蒸馏(DSD),这是一种出奇的有效和新颖的方法,用于训练低质量数据的高质量生成模型。DSD首先预修了一个扩散模型,专门针对嘈杂,损坏的样品,然后将其提炼成能够生产精制,干净的输出的单步生成器。传统上将得分蒸馏视为加速扩散模型的一种方法,但我们表明它也可以显着提高样本质量,尤其是从退化的教师模型开始时。在不同的噪声水平和数据集中,DSD始终提高生成性能 - 我们在图中总结了我们的经验证据1。此外,我们提供了理论见解,表明在线性模型设置中,DSD识别了干净的数据分散协方差矩阵的特征空间,并隐含地正规化了生成器。此透视图将蒸馏片重新升级为效率的工具,而且是改善生成模型的机制,尤其是在低质量的数据设置中。
•本文中包含的信息虽然是从我们认为可靠的来源获得的,但不能保证其准确性或完整性。参考文献在本文中涉及包含地质和技术信息的历史信息。从本质上讲,无法验证此信息。合格的人尚未验证历史信息基础的采样,分析和测试数据。kenorland Minerals Ltd.(“公司”和“ Kenorland”)认为,此历史信息在所有物质方面都是准确而完整的,尽管该公司已经仔细审查了所有可用信息,但无法保证其准确性和完整性。本演讲的内容仅用于信息目的,不构成出售的要约或购买此处提到的任何证券的征集。
在许多应用程序中,我们需要生成一个序列长度比原始视频模型支持的长度更长的视频。为了实现这一目标,我们首先将长视频分为长度L的重叠块,在连续的块之间具有一个框架重叠,并以自动回归方式顺序生成每个块的框架。具体来说,对于第一个块,我们遵循Sec中描述的推理管道。主纸的4.5预测RGB视频。 然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。 要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。 具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。 我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。 我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。 然后将优化目标定义为:主纸的4.5预测RGB视频。然后,我们从第一个块预测中使用框架更新3D缓存,该预测捕获了场景的新观点,并提供了原始3D缓存中不存在的其他信息。要更新3D缓存,我们使用DAV2 [10]估算了第一个块中最后一个帧的像素深度,并通过最大程度地减少再投影误差来使该深度估计与3D缓存对齐。具体来说,我们将深度估计表示为d,并优化d的缩放率和翻译T系数。我们将点云从3D缓存渲染到d的摄像机视图处的深度图像。我们将点云从3D缓存从D的摄像机视图中从D的摄像机视图(表示为D TGT)渲染到深度图像,并且类似于主纸,呈现一个掩码m,指示每个像素是否被3D缓存覆盖。然后将优化目标定义为:
我们提出了G en 3c,这是一种具有精确的C amera c onTrol和暂时3D C的生成视频模型。先前的视频模型已经生成了现实的视频,但是它们倾向于利用少量3D信息,导致不一致的情况,例如弹出和不存在的对象。相机控制(如果完全实现)是不精确的,因为相机参数仅是对神经网络的输入,然后必须推断视频依赖相机。相比之下,G en 3c由3D缓存:通过预测种子图像的像素深度或先前生成的框架获得的点云。生成下一个帧时,G en 3c由用户提供的新摄像头轨迹在3D缓存的2D渲染上进行条件。至关重要的是,这意味着G en 3c都不必须记住它的预期
。cc-by-nc-nd 4.0国际许可证(未获得同行评审证书)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2025年3月2日发布。 https://doi.org/10.1101/2025.02.27.640020 doi:Biorxiv Preprint
工程师和需求管理计划者预测消费和资产特征。这种信息级别将有助于推迟基础设施的扩展或最大程度地减少资产规模(和成本)(例如Gurung等人。 2014a);降低抽水要求和相关的电力成本(Dejan,2011年);减少管道爆发和网络泄漏(Girard and Stewart,2007年);并延长管道网络资产生命周期(Gurung等人。 2014b)。 •为水公司提供机会Gurung等人。2014a);降低抽水要求和相关的电力成本(Dejan,2011年);减少管道爆发和网络泄漏(Girard and Stewart,2007年);并延长管道网络资产生命周期(Gurung等人。2014b)。•为水公司提供机会
摘要 - 这篇文章介绍了一种新颖的图像到语音生成方法,旨在使用深度学习技术将图像转换为文本字幕以及尼泊尔语言的口头描述。通过利用计算机视觉和自然语言处理,该系统分析图像,外观功能,生成人类可读字幕并产生可理解的语音输出。实验利用了图像字幕生成的最先进的变压器架构,并由Resnet和ExcilityNet作为特征提取器补充。BLEU评分用作生成字幕的评估度量。BLEU-1,BLEU-2,BLEU-3和BLEU-4 N-gram所获得的BLEU得分分别为0.4852、0.2952、0.181和0.113。预估计的Hifigan(Vocoder)和Tacotorn2用于文本进行语音合成。所提出的方法有助于尼泊尔语言AI应用的未置换域,旨在提高对尼泊尔语人群的可访问性和技术包容性。
摘要:量子机学习提供了新颖的范式来解决传统自然语言过程中的局限性,例如固定上下文长度和计算效率低下。在这项工作中,我们提出了Qmamba,这是Mamba体系结构的第一个量子适应,将选择性状态空间模型与量子计算集成在一起,以实现有效且可扩展的文本生成。Qmamba利用量子和纠缠等量子原理来实现无界的上下文大小,并减少了计算复合物。我们的贡献包括开发针对硬件结合的量子生成模型,编码,嵌入和测量技术方面的进步,以及其在模式复制和上下文挑战任务上的表现,例如“ Haystack中的针刺”。实验结果证实了Qmamba在不同序列长度上保持高效率和性能的潜力,为未来量子增强自然语言处理的探索奠定了基础。
现代铁路系统需要一个可靠的框架,以优先考虑安全,效率和可持续性。这种集成的方法结合了先进的火车保护机制,智能平台技术以及通过涡轮机的可再生能源产生,以创建更安全,更环保的铁路运输环境,该系统通过控制火车速度和运动来防止事故,并在必要时自动应用制动器。安装在火车和轨道上的传感器提供有关火车性能,轨道状况和使用机器学习算法的潜在危害的连续数据,该系统可以分析数据以预测潜在的事故,从而使积极的措施可以建立一个可靠的通信网络,以连接火车,控制中心,并确保对新兴的紧急响应。小型涡轮机可以安装在火车平台或相邻区域上,以利用高速行驶的火车产生的风能。这种可持续的能源可以为平台系统供电并提高整体效率。整合电池系统以存储生成的能源可以提供可靠的电源,尤其是在高峰使用时间
可扩展,安全和适应AI,虚拟化和实时数据处理轴向AX300是一个高度可配置的边缘计算平台,旨在处理IT/OT环境中的复杂工作负载。其灵活的体系结构支持AI,机器学习,数据分析和虚拟化,使其非常适合工业自动化,智能城市和关键基础架构。具有高级安全功能,包括TPM和加密,可确保数据完整性和保护。轴向AX300提供远程管理功能,可从任何地方进行无缝部署,监视和更新。其可扩展设计支持大型语言模型推断和边缘的实时数据处理。为在恶劣环境中的可靠性中构建,轴向AX300提供了低延迟,有效的计算,桥接云和边缘智能为下一代AI驱动的决策和自主系统提供动力。