生成的AI代表了技术进步的最前沿的动态领域,其中算法充满了想象,创造和创新的能力。在本课程中,我们旨在为您提供对生成AI的原理,技术和应用的全面了解,同时为您提供一些有机会深入研究专门的主题和为您的利益量身定制的实践项目。计算机科学与工程系为民用,计算机工程,电子和电信和机械工程的学生提供了生成AI的多学科辅修课程,从第三学期本身开始。它跨越了五个学期,最终达到了一个顶峰项目,总计14个学分。课程始于对人工智能和机器学习的理解,并熟悉神经网络的概念,深度学习,这为更深入研究生成AI提供了必要的基础。学生还将学习生成AI中的各种模型,以及这些模型如何通过学习培训数据的基础分布来生成新的数据点。也将熟悉生成AI的各种工具,技术和应用。学生将使用流行的深度学习框架(如Tensorflow或Pytorch)以及不同的体系结构,损失功能和超参数来了解其对生成产量的质量的影响,从而获得动手体验。除了生成逼真的图像或文本之外,还可以探索生成AI的创造性应用。这可能包括音乐发电,风格转移,甚至包括整个故事或艺术品。学生还将学习生成AI的道德含义,例如深层和数据隐私问题。他们还将了解这些技术的社会影响以及如何负责任地使用它们。
内容表2介绍:Atropos健康3问题定义4研究问题5方法6准备药物来源术语6方法1:通过医疗保健特定的NLP模型7命名实体识别命名的实体识别7方法2:通过UMLS API通过UMLS API 7方法7方法7方法7方法3:umls api plus for gpti plus gpt-4人类访问量11的方法, Mapping Outcomes 11 Other Mapping Outcomes 11 Approach 1: Janus-Derived Maps 13 Janus AUROC Curves for Different Mapping Outcomes 14 Approach 2: UMLS API Alone 15 UMLS API Alone Correctness Metrics 15 Approach 3: Generative Terminology Mapping 17 Generative Terminology Mapping Results: 90% Reduction in Errors, 91% Coverage, 98% Reduced Cost 18 Generative Terminology Mapping (UMLS API Plus GPT-4)正确性指标18生成术语映射与地面真相结果和混乱矩阵18数据工程挑战19估计成本和比较20结论21生成术语映射生成研究级RXNorm映射药物数据,在21个警告和未来方向23附录23附录24
我们介绍了Physgaussian,这是一种新方法,将物理扎根的牛顿动力学无缝地集成在3D高斯人中,以实现高质量的新型运动合成。采用自定义材料方法(MPM),我们的方法丰富了3D高斯内核,具有物理意义的运动学变形和机械应力属性,所有这些都符合连续力学原理。我们方法的定义特征是物理模拟和vi-sual渲染之间的无缝集成:这两个组件都利用相同的3D gaus-sian内核作为离散表示。这否定了三角/四面体缝合,行进的立方体,“笼子网格”或任何其他几何嵌入的必要性,突出了“您所看到的就是您所见的原则(WS 2)。”我们的方法证明了各种材料(包括弹性实体,塑料金属,非牛顿液和颗粒状材料)的特殊效果,展示了其在创建具有新颖观点和运动的Di-Verse视觉内容方面的强大能力。我们的项目页面是:https://xpandora.github。io/ physgaussian/。
培养学生对学习的兴趣被认为具有许多积极的下游效果。大型语言模型已经开辟了新的范围,以生成满足自己利益的内容,但目前尚不清楚这种自定义的方式在多大程度上可以对学习产生积极的效率。为了探索这个新颖的维度,我们进行了一项受试者间研究(n = 272),其具有生成的AI词汇学习应用程序的不同变化,使用户可以个性化他们的学习示例。参与者被随机分配给对照(句子来自先前存在的文本)或实验条件(根据用户的文本输入而生成的sen tence或短篇小说)。虽然我们没有观察到结构之间的学习绩效的不同,但分析表明,生成的AI驱动的环境个性化的个性化阳性的学习动机。我们不知道这些结果与以前的fndings有何关系,并强调了它们对使用生成AI进行个性化学习的新兴费用的意义。
深层生成模型(DGM)是用于学习数据表示的多功能工具,同时合并了域知识,例如条件概率分布的规范。最近提出的DGMS解决了比较来自不同来源的数据集的重要任务。这样的示例是对比分析的设置,该分析的重点是描述与背景数据集相比富含目标数据集中的模式。这些模型的实际部署通常假定DGM自然推断出可解释的和模块化的潜在表示,这在实践中是一个问题。因此,现有方法通常依赖于临时正规化方案,尽管没有任何理论基础。在这里,我们通过扩展非线性独立组件分析领域的最新进展,提出了对比较DGM的可识别性理论。我们表明,尽管这些模型在一般的混合功能上缺乏可识别性,但当混合函数在零件上时,它们令人惊讶地变得可识别(例如,由Relu神经网络参数化)。我们还研究了模型错误指定的影响,并从经验上表明,当未提前知道潜在变量的数量时,以前提出的用于拟合比较DGM的正则化技术有助于识别性。最后,我们引入了一种新的方法,用于拟合比较DGM,该方法通过多目标优化改善了多个数据源的处理,并有助于使用约束优化以可解释的方式调整正规化的超参数。我们使用模拟数据以及通过单细胞RNA测序构建的细胞中的遗传扰动数据集以及最新的数据集验证了我们的理论和新方法。关键字:非线性ICA;深层生成模型;变分推断;解开;
摘要。近年来,自然语言处理领域(NLP)发生了一场革命,文字一代在这一转变中起着关键作用。这种转变不仅限于技术领域,而且还无缝渗透了创意领域,一个很好的例子是歌曲歌词的一代。真正有效的生成模型,例如生成训练的预训练变压器(GPT)-2,需要进行微调作为关键步骤。本文利用了广泛参考的Kaggle数据集的鲁棒性,标题为“歌曲歌词”,仔细探讨了调节三个关键参数的影响:学习率,批处理大小和序列长度。数据集提出了一个引人入胜的叙述,该叙述将学习率视为最有影响力的决定因素,直接影响了产生的歌词的质量和连贯性。在增加批处理大小和扩展序列长度有望增强模型性能的同时,很明显,还有一个饱和点,超出该点的效果受到限制。通过此探索,本文旨在揭开模型校准的复杂世界,并强调战略参数选择在追求抒情卓越方面的重要性。
生成AI在纳米复合材料的开发中的整合通过实现量身定制的功能彻底改变了该领域。这种创新方法利用机器学习算法设计和优化具有特定特性的纳米复合结构。通过生成纳米复合构型的庞大虚拟库,生成的AI加速了具有增强的机械,热和电气性能的新型材料的发现。本摘要概述了生成AI驱动的纳米复合材料设计中最新的最新概述,强调了其改变能源,航空航天和生物医学等行业的潜力。我们探索了这个新兴领域的挑战和机遇,强调了生成AI在纳米复合材料中解锁前所未有的功能的潜力。
(3)深层生成模型求解随机过程:研究求解随机模型(例如扩散模型)(例如扩散模型)(例如,扩散模型)中随机过程的随机微分方程(SDE)或部分微分方程(PDE)(PDE)(PDES)。模型)在培训期间(5)生成模型中的隐式偏见和正则化:探索生成模型中存在的隐式偏见及其对概括的影响。研究显式和隐式正则化技术的有效性(6)生成模型的鲁棒性和泛化边界:分析生成模型的鲁棒性界限及其在分布分布的场景下(7)潜在的空间几何形状(7)潜在的空间几何学和流形学习:分析与生成模型的潜在空间和与生成数据分配的分析及其关系分配的相关性。探索如何平衡潜在空间中的多样性和发电质量,并研究复杂数据情景中不同流形学习技术的有效性和局限性
本论文研究了不同的用户界面 (UI) 设计如何影响用户对生成式人工智能 (AI) 工具的信任。我们进行了一项实验,采用绿野仙踪方法测试了三种具有不同 ChatGPT UI 变体的工具的信任级别。来自不同学科的九名志愿大学生参加了实验。我们使用问卷来评估参与者在与每种工具交互后以及与所有工具交互后的信任感知。结果表明,参与者之间的信任水平受到生成式 AI 的 UI 设计的影响,尤其是头像设计和文本字体。尽管共享相同的文本源,但大多数参与者认为 ChatGPT 与其他工具相比最值得信赖。结果还强调了对话界面在与生成式 AI 系统建立信任方面的重要性,参与者表示更喜欢促进自然和引人入胜的交互的界面。该研究强调了 UI 对信任的重大影响,旨在鼓励对生成式 AI 更加谨慎的信任。
4。Digital infrastructures....................................................................................................11