● 合同审批与执行 ISUPP 1060 ● 电子和信息技术可访问性 ISUPP 1020 ● 平等机会、骚扰和非歧视 ISUPP 3100 ● HIPAA 合规性 ISUPP 1100 ● 采购 ISUPP 2560 ● 平等机会和平权行动 ISUPP 3080 ● 学术自由 ISUPP 4040 ● 学术诚信与不诚实 ISUPP 4000 ● 教师道德 ISUPP 4120 ● 学生行为准则 ISUPP 5000 ● 知识产权 ISUPP 7010 ● ISU 出口管制 ISUPP 7040 ● ITS 可接受使用 ISUPP 2400 ● ITS 访问控制 ISUPP 2410 ● ITS 采购、开发和维护 ISUPP 2420 ● ITS 资产管理 ISUPP 2430 ● ITS 信息安全 ISUPP 2500 ● ITS 安全角色和职责 ISUPP 2480
在研究和撰写本文的过程中,我们采访了 40 多人,他们从专家博士到八年级学生,应有尽有。我们还借鉴了 Common Sense 的集体智慧,过去几年来,Common Sense 在其教育、政策、研究、宣传和发展团队中积累了丰富的生成式人工智能专业知识和知识。我们试图将平时不怎么交流的人聚集在一起,将不同的观点拼凑成一个整体。在如此广泛的声音中,我们听到了同样广泛的反应——恐惧、惊愕、兴奋、焦虑和乐观——有时这些反应是同时出现的。这些反应都没有错。在 ChatGPT 发布近两年后,尽管我们对未来抱有很大的希望,但我们仍然缺乏明确的指导方针、护栏或政策。
GenAI 的技术进步反映在专利活动的急剧增加上。在过去 10 年中,GenAI 的专利家族数量从 2014 年的仅 733 个增长到 2023 年的 14,000 多个。自 2017 年推出 Transformer(大型语言模型背后的深度神经网络架构已成为 GenAI 的代名词)以来,GenAI 专利数量增长了 800% 以上。在同一时期,科学出版物的数量增长更多,从 2014 年的仅 116 篇增加到 2023 年的 34,000 多篇。仅在 2023 年,就发表了超过 25% 的 GenAI 专利和超过 45% 的 GenAI 科学论文。
Bender,E。M.,Gebru,T。McMillan-Major,A。&Shmitchell,S。(2021)。关于随机鹦鹉的危险:语言模型会太大吗?在关于公平,问责制和透明度会议上(FACCT '21),3月3日至10日,2021年,加拿大虚拟活动。ACM,纽约,纽约,美国,14页。 https://doi.org/10.1145/3442188.3445922ACM,纽约,纽约,美国,14页。https://doi.org/10.1145/3442188.3445922
这些材料旨在介绍演讲中涉及的主题。演讲和此处包含的材料并非试图为任何特定情况提供法律建议。必须根据所有相关事实和情况对每种情况进行单独分析。由于与此处主题相关的法律问题的复杂性,律师的参与至关重要。这些材料仅用于教育和讨论目的,未经演讲者明确书面同意,不得在本研讨会之外复制、使用或分发。此处的观点(如果有)不属于演讲者的任何客户或公司。
“我是一名人力资源沟通专家,拥有五年多的经验。在过去三年中,我一直负责 Hartley 公司的人力资源沟通工作。在这个职位上,我管理一个由三人组成的团队,我们负责向 8,000 名员工传达所有福利和政策。在此职位之前,我的职业生涯始于 General Financial 的人力资源协调员,两年间我学到了很多东西。当我的经理调到 Hartley 时,她邀请我一起负责他们的人力资源沟通工作。我很喜欢在 Hartley 的时光,但我开始考虑下一步该怎么做,因为目前的职位没有太多的成长空间。在我职业生涯的这个阶段,我觉得我已经准备好将我的技能运用到一个更全球化的组织中,以应对一些新挑战,这就是我如此感兴趣的原因这个职位。”这是我的简历:{resume}
考虑可能的选择,制定并向客户建议适当的行动方案(守则 3.3-1(a)); 根据每个事项的需要,通过应用适当的技能,包括法律研究、分析和解决问题,实施所选的行动方案(守则 3.3-1(c)(i)、(ii) 和 (viii)); 在事项的所有相关阶段及时有效地沟通(守则 3.3-1(d)); 认真、勤勉、及时且具有成本效益地履行所有职能(守则 3.3-1(e)); 将智力、判断和审议运用到所有职能中(守则 3.3-1(f)); 追求适当的专业发展,以保持和提高法律知识和技能(守则 3.3-1(j));以及 以其他方式适应不断变化的专业要求、标准、技术和实践(守则 3.3-1(k))。
AI技术的快速进步,尤其是与机器学习(ML)和深度学习(DL)相关的技术的快速进步,已大大扩大了自动化系统攻击和防御能力的范围。ml是指可以在不明确编程的情况下从数据中学习的算法,而DL通过利用复杂的人工神经网络来基于ML构建ML,以从数据中的复杂模式中学习。但是,这一进度呈现了一把双刃剑。一方面,AI增强了网络安全度量,从而能够开发出强大的预测安全系统。另一方面,它具有同等授权的网络对手,他们利用这些技术来开发可超越传统安全措施,适应新环境并以惊人效率逃避检测的恶意软件。