通常,报纸上的编辑负责监督内容,但很少满足。为什么?《华尔街日报》,《纽约时报》和福克斯经常同时获得相同的新闻,但第二天将以三种完全不同的方式将其旋转。因此,新闻编辑很少满足,因为明天的论文只有几个小时的路程,因此需要遗漏很多内容。此外,在3个月中,报纸的故事草案将不会被发送给三,四个(或更多)匿名和挑剔的专家审稿人,他们将不可避免地要求进行6个月的其他实验。如果是这样,将没有新闻论文!相比之下,对于基因和发展等科学期刊而言,剖析每个观点是重要的,最终需要其他事实来阐明原始事实是痛苦的,但不可避免。即便如此,许多修订的手稿都被拒绝了,因为审稿人3(您知道您是谁),数据还不错,但所见的手稿缺乏新颖性。对于裁员的论文,通常仍然需要几个月的时间,并且在修订时被ooc之以鼻的风险并不少见。G&D的建立发生在1990年代中期的“紧急主义”中,以解决分子生物学的大伞,但基于核酸,基因组调节机制,以及更广泛的生物学过程的概念,这些概念是在新科学中。与Cold Spring Harbour实验室校园中心的G&D一起,是时候利用环境并冒着做一些新事物的风险了。因此,G&D诞生了,从其成立起就有坚实的基础。,随着新实体的一些失误和失误,它于1987年推出,Terri Grodzicker于1989年8月成为编辑。要使新期刊成功,它需要一个带有phi-div>的编辑器
背景:花的结构显著影响被子植物与环境的相互作用,尤其是因为它决定了植物授粉的物种集合。花器官特征如何发展的遗传基础在很大程度上已被阐明:主要有三类花同源基因,称为 A 类、B 类和 C 类基因,它们以组合方式决定在花中形成哪些器官 [1, 2]。根据所谓的花发育 ABC 模型,仅 A 类基因的表达会导致萼片的发育,A 类和 B 类基因的共同表达会导致花瓣的形成,B 类和 C 类基因的共同表达决定雄蕊,而 C 类基因的单独表达则会产生心皮。所有 ABC 基因都编码转录因子。然而,编码微小 RNA (miRNA) 的基因也已被证明对发育具有重要意义 [有关综述,请参阅参考文献 3]。ABC 基因和 miRNA 甚至可以一起起作用。已发现一种 miRNA,即 miR5179,可以调控 B 类基因的一个分支的成员,即兰花中的 DEF 样基因 [4]。这种 miRNA 非常引人注目。虽然编码 miRNA 的基因(miR 基因)通常具有较高的出生和死亡率,因此在进化时间尺度上仅存在很短的时间,但很少有基因获得重要的发育功能,因此在广泛的分类群中保存了数亿年。然而,miR5179 并不符合这两种模式。我们实验室对基因组、转录组和 miRNome 数据的分析表明,miR5179 可能起源于大约 2 亿年前的开花植物茎群,并在多个植物谱系中得到保存。因此,它出现在许多现存物种中,如猕猴桃(猕猴桃)、柑橘(橙子)、野芭蕉(香蕉)和水稻(水稻),表明 miR5179 具有重要作用。然而,相比之下,miR5179 在许多其他开花植物谱系中已经独立消失,例如在 Vitales、Malvales 和 Pandanales 目中,这表明 miR5179 在这些情况下是可有可无的。因此,miR5179 提出了一个有趣的难题:它很古老,但并未普遍保存。为什么它在某些植物中具有重要的功能,但在其他植物中却可有可无?
基因组工具促进了繁殖计划中有效选择改进的遗传材料。在这里,我们专注于两个苹果水果质量特征:形状和大小。我们利用了从355种基因型的收获中收集的11种水果形态参数的数据,该基因型是Apple Refpop Collection的355个基因型,该基因型是欧洲培养苹果中存在的遗传变异性的代表性样本。然后使用FARMCPU和BLINK模型将数据用于全基因组关联研究(GWAS)。分析确定了59个与果实的大小和形状性状相关的SNP(35个带有farmcpu和45张眨眼),负责71 QTN。这些QTN分布在所有染色体上,除了染色体10和15。由27个SNP识别的三十四个QTN与大小特征相关,而37个由26个SNP识别的QTN与形状属性有关。含有最相关的SNP的单倍嵌段的定义,其中包括卵形家族蛋白MDOFP17和MDOFP4的基因,该基因在9.7kb的Haploblock上,在11.7kb的Haplobock中。RNA-seq数据显示,这些基因在长方形品种“ skovfoggoggoggoggoggoggoggoggoggoggoggoggoggoggoggoggog”中的表达低或无效,并且在平坦的“ Grand'mere”中表达更高的表达。基因本体富集分析支持OFP和激素在形状调节中的作用。总而言之,对Apple RefPop收藏的这种全面的GWA分析揭示了有希望的遗传标记和与苹果水果形状和大小属性相关的候选基因,从而提供了有价值的见解,从而可以提高未来繁殖计划的效率。
方法:对于心力衰竭和健康对照组复杂性心肌病患者的基因表达促纤维和临床数据,来自基因表达综合(GEO)数据库。从分子特征数据库(MSIGDB)下载了与能量代谢相关的基因集以进行后续分析。加权基因共同表达网络分析(WGCNA)和差异表达分析被用于识别与心力衰竭相关的关键模块和基因。通过基因富集分析(GSEA),基因本体论(GO),基因和基因组百科全书(KEGG)(KEGG)以及构建竞争性的内源性RNA(CERNA)网络来研究潜在的生物学机制。分子对接模拟,以探索潜在的治疗药物与轮毂基因的结合和构象。
神经嵴细胞基因控制神经嵴细胞向发育中的脊椎动物胚胎多个部分的迁移。最近有一个假设认为,家养动物特有的“驯化综合症”是由对神经嵴细胞基因(特别是影响细胞迁移的基因)的驯化选择所驱动。这可以解释为什么这种综合症涉及许多不同的表型效应。这些影响可能与神经嵴细胞迁移缺陷有关。该假设预测,家养物种和相关野生物种对这些神经嵴细胞基因的选择模式将有所不同。具体而言,它预测与密切相关的野生物种相比,家养物种对这些基因的正向选择水平更高。在这里,我们在比较框架中测试了这一预测。我们从公共数据库 (NCBI) 中获得了 30 种家养脊椎动物和仍处于野生状态的匹配近亲的 11 个关键神经嵴细胞基因的 DNA 序列。我们利用 HyPhy 软件套件中的 Contrast-FEL 程序,在系统发育框架中比较了这两种分类群中正向选择的位点数量(以跨密码子的非同义核苷酸到同义核苷酸替换率来衡量)。我们发现,相对于与其密切相关的野生谱系,驯化谱系对这些关键基因表现出始终更高的正向选择水平。此外,我们还发现了放宽选择和纯化选择的证据。我们认为,这一结果与这些基因在驯化综合征中的重要作用相一致。
图 2 Dlg2 + / 和野生型大鼠中蛋白质 PSD-93 (A)、PSD-95 (B) 和 NR1 NMDA 受体亚基 (C) 的表达。这些是在四个大脑区域进行的评估:前额皮质 (PFC)、后皮质 (CX)、海马 (HP) 和小脑 (CB)。小脑 NR1 表达太低,无法进行分析,因此未报告。数据显示为平均值 ± SEM 积分密度图加上单个数据点。n = 12 只野生型,12 只 Dlg2 + / 。与野生型相比,Dlg2 + / 大鼠的前额皮质、后皮质、海马和小脑的 PSD-93 有所下降,而 PSD-95 或 NR1 NMDA 受体亚基水平没有变化
这是基因的起源是生物学中的一个基本问题,实际上是一个比发现基因本身更古老的问题。一个多世纪以来,除了重复和与以前的基因的差异之外,思考起源是不平衡的。近年来,遗传学,胚胎发育和生物信息学的相互作用已经从非基因DNA,水平基因转移,显着地,病毒和转座子入侵从头产生,从而使当前的基因组成了这些新的基因,从而使这些新人塑造了旧基因,从而使旧基因构成了旧基因,从而使旧基因构成了旧基因。我们在这里总结了该领域的一些最新研究,主要是在脊椎动物的谱系中,重点是蛋白质编码的新颖性,表明胎盘,适应性免疫系统或高度发达的Neocorex,以及其他创新以及其他创新与De Novo Gene的创造或Virus和Transpopsins链接。我们挑衅地表明,蝙蝠对病毒感染的高耐受性也可能与蝙蝠谱系中先前的病毒和转座子入侵有关。