遗传条件 尽管大约 40% 的男性不育的具体病因尚不清楚,但一项欧洲研究发现,多达 25% 的无精子症和严重少精子症男性患有遗传异常,包括囊性纤维化跨膜传导调节器 (CFTR) 基因突变、Y 染色体微缺失和染色体异常。2,8 已发现大约 1000 个基因可能对精子发生有直接影响,并与泌尿生殖系统出生缺陷和性别分化障碍有关,这些基因可能共同导致以后的生育问题。 9-15 在某些情况下,基因可能会被删除,或者基因的拷贝数可能会增加或减少(由于微重复或微缺失导致的染色体结构异常),从而产生广泛的表型,或者基因可能会发生表观遗传修饰,这可能会改变表达水平而基因本身没有结构上的变化。16
o Google教室 - 用于与学生每日互动,涵盖绝大多数不同的教育资源(每日笔记,退出门票,教室民意调查,快速检查,其他资源/支持,家庭作业等) div>o gafe(Google Apps for Education) - 使用与Google连接的各种程序在该地区进行合作,联合老师,年级合作伙伴老师,以及与学生保持联系中所涵盖的内容的联系。用于实时收集数据,请参阅作业完成后的结果,以允许21世纪学习。一对一的学生笔记本电脑 - 西德福德学区的所有学生都获得了一台计算机,可以在每个课程/主题中学习21世纪。其他支持视频 - 下面的视频网站只是视频的示例,可用于支持此主题中的每个课程
本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1002/hep.32735
摘要:本章探讨了我们对遗传的理解从前孟德尔概念到孟德尔原理的演变及其后续发展。在孟德尔之前,遗传理论主要是推测性的,混合遗传等观点认为后代是父母特征的均匀混合。格雷戈尔孟德尔在 19 世纪中叶的开创性工作引入了颗粒遗传的概念,通过豌豆植物实验证明特征是作为离散单位或基因遗传的。孟德尔提出了三个关键原则:分离定律,该定律指出等位基因对在配子形成过程中分离;独立分配定律,该定律断言不同特征的基因在配子形成过程中彼此独立分配;显性定律,该定律解释了一些等位基因是显性的,而另一些是隐性的。后孟德尔遗传学扩展了这些原则,整合了染色体遗传、基因连锁和分子遗传学的概念,极大地加深了我们对生物遗传和变异的理解。
摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
黑豆 [ Vigna mungo (L.) Hepper] 是一种营养丰富的豆科作物,主要生长在南亚和东南亚,其中印度的种植面积最大,那里的黑豆作物受到多种生物和非生物胁迫的挑战,导致产量严重损失。改善遗传收益以提高农场产量是黑豆育种计划的主要目标。这可以通过开发对主要疾病(如绿豆黄花叶病、乌豆叶皱缩病毒、尾孢叶斑病、炭疽病、白粉病)和昆虫害虫(如白蝇、豇豆蚜虫、蓟马、茎蝇和豆象)具有抗性的品种来实现。除了提高农场产量外,结合市场偏好的性状还能确保采用优良品种。黑豆育种计划依赖于有限数量的亲本系,导致所开发品种的遗传基础狭窄。为了加速遗传增益,迫切需要纳入更多不同的遗传物质,以改善育种群体的适应性和抗逆性。本综述总结了黑豆的重要性、主要的生物和非生物胁迫、可用的遗传和基因组资源、潜在作物改良的主要性状、它们的遗传以及黑豆用于开发新品种的育种方法。
由遗传学教授苏珊·荷兰(Susan K.除了功能失调的睫状网络之外,缺失的结构还导致某些应该具有纤毛的细胞产生粘液,这可能会导致气道问题增加。
“ imeta”是由Imeta Science Society于2022年推出的Wiley合作杂志,这是2024年的第一个影响因素(IF)23.8,在世界上排名前107/21973,在微生物学中排名2/161。它旨在发表具有广泛和多样化的观众的创新和高质量论文。其范围类似于自然,细胞,自然生物技术/方法/微生物学/医学/食物等。其独特的功能包括视频摘要,双语出版物和社交媒体传播,有超过60万名关注者。由SCIE,PubMed,Google Scholar等索引。“ imetaomics”于2024年推出,并于2025年发射,其目标是> 10,其范围类似于自然通信,细胞报告,微生物组,ISME J,核酸研究,生物信息信息的简报等。欢迎所有贡献!
图1:不同数据集中的遗传力(H 2)地图。a。显示低维空间,其颜色由功能网络编码34。b。显示了三个组织轴的本征图,该轴是根据人类连接组项目(HCP)35的函数连接模板22计算得出的。所有个人都与此组级模板保持一致。我们使用单个梯度和谱系/基因型信息来计算单核苷酸多态性(SNP)基于双核苷酸多态性(C),基于Twin的HCP(D)和基于TWIN的QTAB(E)的每个梯度的遗传力(H 2)。f。每两个遗传力图之间的空间相关性。空间自相关被认为使用测量距离变化函数图将图置入图,并且基于1000个排列获得了P变化图值。
本期特刊将巩固在遗传学,进化,细胞遗传学和细胞基因组学领域内的现有信息,并概述其在植物保护中的作用。我们欢迎有关各种主题的论文,其中包括但不限于以下内容:评估遗传和细胞遗传学多样性;人口遗传结构;基因流和连通性;局部适应;保护基因组学;保护稀有和受威胁的物种;恢复遗传学;种质管理;杂交和渗入的影响;多倍体和染色体重排的作用;鱼类和吉什应用;染色质组织;转座元素的动力学;和基因组大小的进化。我们特别欢迎提交多种方法的方法,并概述了在迅速变化的世界中基因组变异对植物保护的含义。因此,该主题将成为研究人员,保护生物学家和对保护植物生物多样性感兴趣的政策制定者的重要资源。