1998 年 1 月,我们的朋友和同事 Larry E. Gentry 在家中去世。Larry 八年前被诊断出患有脑瘤,并勇敢地与病魔抗争。Larry、他的妻子 Sue 和他们的女儿 Melanie 和 Andrea 的勇气和信念真正鼓舞了我们。在发现癌症后不久,Larry 告诉我们,他的病不应该成为讨论的话题,他希望继续他的研究和教学,不被区别对待。我们尊重他的意愿,尽管必须忍受手术、实验性治疗、放疗和化疗,Larry 还是继续教学、继续研究、培养研究生并与我们所有人交朋友。在整个磨难中,Larry 没有抱怨,他的笑容总是令人愉悦。
Renée J. Gentry 是乔治华盛顿大学法学院疫苗伤害诉讼诊所主任,也是该校的杰出法学教授讲师。她是一位领先的
蒙特雷 迪尔 埃里卡 丹尼斯 鲁比·登特 匿名捐赠者 琼·多西 克里斯塔·德雷舍-伯克 布莱恩·爱德华兹 杰森·艾切 乔安娜·厄尼 多丽西尔·埃弗里特-奥尼尔 威廉·法默 埃默拉尔德·费兰 詹姆斯塞塔·弗格森 拉·塔莎·菲尔兹 玛丽安·芬克 西莱娜·菲什巴克 露易丝·弗洛伊德 香农·弗洛伊德 迈克·福特 马修·加德森 罗纳德·加洛 丹妮拉·加梅斯 肖恩·加德纳 保拉·加纳 何塞·加斯坦比德 坎迪斯(马龙) 金特里 维克托里·金特里 伊薇特·金特里 维尔纳·戈特利 瑞莉·戈登 蒂法妮·格兰特 雷切勒·格雷 唐娜·格里芬 马修·格里芬 玛丽·格里森 亚当·霍尔 马克·汉密尔顿 丽贝卡·汉默 科尔特斯·汉普顿 乔什·汉普顿 乔纳森·哈迪 德马科·哈里斯 拉维尼娅·霍金斯 约翰·海耶斯 艾米丽·海德 夏洛特·海克 卡莱西亚·亨森 特内尔·希克斯 布列塔尼·希尔 - 怀特黑德 约翰尼·霍奇-卡彭特 多迪·豪利特Sherry Huhmann Tyler Huhmann Joshua Hurt April Irvin Ralph Irwin
基于晶格的密码系统(Kiltz等,2018; Bos等,2018; Fouque等,2020)被选为NIST Quantum加密后(PQC)Standards(Alagic等,2022)。Lattice-based schemes, including the PQC standards, are often based on polynomial rings i.e., NTRU (Hoffstein et al., 1998; Fouque et al., 2020), Ring-LWE (Stehl´e et al., 2009; Lyubashevsky et al., 2010) and Module-LWE (Brak- erski et al., 2011; Langlois and Stehl´e, 2015年),以提高效率。离散的高斯概率分布(定义2.2)是晶格cryp-图表中的重要对象,更普遍地是晶格的数学效果。例如,对晶格问题的计算硬度的分析(Regev,2005; Micciancio和Regev,2007; Gentry等,2008; Peikert,2009; Brakerski等,2013)依赖于离散高斯人的有用特性。此外,许多基于高级晶格的Crypsystems,例如基于身份的加密(Gentry等,2008; Agrawal等,2010)和功能
•托马斯·穆勒(ThomasMüller)(苏黎世):从瑞士KPD计划中学到的教训•Dorry Segev / Sommer Gentry(纽约):US KPD经验•Medhat Askar(Doha):达拉斯经验•Ty Dunn Blink(Wisconsin)(Wisconsin)(Wisconsin):最大化的penters penters penters penters consece cospece tosece tosece cospece tosece consect and nive thrane transplem and kkhar and khh• (利雅得):一个大型的单中心KPD程序
Elizabeth Gentry 担任美国国家标准与技术研究所 (NIST) 度量衡办公室 (OWM) 法律与度量衡计划的度量衡协调员,负责向联邦、州和地方政府、商业、工业、教育机构和公众提供有关国际单位制 (SI,通常称为公制) 的信息和帮助,并寻找机会增进对 SI 测量系统的理解并在贸易和商业中使用。NIST 的其他职责包括确保 55 个州和县标准校准实验室的管理系统符合 ISO/IEC 17025、检测和校准实验室能力的一般要求和 NIST HB 143、国家度量衡实验室计划手册,并担任 NIST OWM 能力测试计划质量经理。她是 NIST SP 1038(国际单位制 (SI) - 通用换算系数)的联合编辑。Gentry 作为国家标准实验室国际会议 (NCSLI,一个专业协会) 164 教育联络和推广委员会主席,负责协调科学、技术、工程和数学 (STEM) 教育推广,以提高人们对测量科学原理、计量职业和增加新计量师进入劳动力市场的策略的认识。有关计量职业的更多信息,请访问 http:
编号1 *电子捕获量计的开发进度报告。W. R. Glongstun,1943年7月。编号2 *一个项目,用于测试压力模式对预测的潜在有用性。H. W. Norton,G。W。Brier和R. A. Allen,1944年1月。编号3 *关于在某些地区和期间之间间隔的暴风雨期间持续时间的初步报告。L. L. Weiss,1944年1月。编号4 *五天平均表面图与其组件每日图之间的某些关系。C. B. Johnson,1944年1月。编号5改进预测趋势方法。P. F. Clapp,1943年7月。编号6(未分配。)编号7 *在深度低点以南的新移动中心的形成。R. C. Gentry,1944年1月。编号8 *对10,000英尺高的预测流量模式的轨迹方法进行了研究。H. G. Dorsey和G. W. Brier,1944年1月。编号9 *关于格陵兰,冰岛和英格兰停滞高点的初步报告,以及7月和8月的白令海和阿拉斯加。R. C. Gentry和L. L. Weiss,1944年1月。 编号 10 *伦敦温度的持久性。 H. W. Norton和G. W. Brier,1944年1月。 编号 11 *选择“最佳”预测的技能。 G. W. Brier,1944年1月。 编号 关于上空空气中跨压力和温度变化的12个注释。 R. C. Gentry,1944年1月。 (未出版。) 编号 (未出版。)R. C. Gentry和L. L. Weiss,1944年1月。编号10 *伦敦温度的持久性。H. W. Norton和G. W. Brier,1944年1月。编号11 *选择“最佳”预测的技能。G. W. Brier,1944年1月。编号关于上空空气中跨压力和温度变化的12个注释。R. C. Gentry,1944年1月。(未出版。)编号(未出版。)13调查和实际使用在上层图表上构建六个小时的isallobars的方法。E. M. Cason和P. F. Clapp,1944年1月。编号大气的重量变化分为三层。L. L. Weiss,1944年2月。(联合国出版。)编号15 *关于亚特兰大和迈阿密地区(北卡罗来纳州,佐治亚州和佛罗里达州)的预测预测的一些注释。格雷迪·诺顿(Grady Norton),1944年2月。编号16 *预报员信心的验证以及在天气预报中使用概率语句的使用。G. W. Brier,1944年2月。编号17 *伴随亚速尔群岛区域的气旋活动的压力模式。R. L. Pyle,1944年3月。编号18 *正常的平均虚拟温度和空气柱的重量在海平面和10,000英尺之间。工作人员,1944年7月的扩展预报部分。编号19 *在西海岸地层形成和耗散期间温度变化。Morris Neiburger(加利福尼亚大学洛杉矶分校),1944年7月。编号20在西风中长波运动的经验研究。P. F. Clapp,1944年7月。(未租用租用。)编号21 *有关预后天气图表制备的报告集。J. R. Fulks,H。B。Wobus和S. Teweles,由C. P. Mook编辑,1944年10月。编号22 *在较低对流层中表面温度与平均虚拟温度之间的关系。W. M. Rowe,1944年11月。编号编号23 *预测加利福尼亚州奥克兰机场的Stratus Cloud天花板形成时间。爱德华·M·弗农(Edward M. Vernon),1945年4月。24 *对纬向指数的极性反气旋发生和相关变化的研究。杰罗姆·纳米亚斯(Jerome Namias),1945年9月。编号25 *有关洛杉矶地区客观降雨预测研究计划的进度报告。J. C. Thompson,1946年7月。编号26 A盆地中定量降水预测的研究。Glen W. Brier,1946年11月。$ 0.25号27客观的预测天气最低温度的客观方法,D。C。C. P. Mook和Saul Price,1947年8月。$ 0.35号28 *夏威夷群岛预测远程降水的可能性。Samuel B. Solot,1月1日。编号29预测田纳西山谷五天降水的客观方法。William H. Klein,1948年7月。^ _ $ 0-30编号30关于降水的人工产生的第一部分报告:俄亥俄州层状云,1948年。Richard D. Coons,R。C。Gentry和Ross Gunn,1948年8月。$ 0.30
对热带气旋动力学的理解是:大气边界层物理,空气界面以及旋风中的多尺度相互作用,导致强度变化和快速强化。这些问题的核心是我们观察和建模这些多规模过程的能力。数值建模是一种更好地理解热带气旋进化的强大工具,但是,对于模型的尺寸和尺度,它具有挑战性。增加分辨率是已知可以提高全球气候模型在模拟热带气旋活动中的技能(Roberts等人2020,Bourdin等。2024),并影响旋风结构和物理学(Baskhar Rao等,2009; Fierro等人。2009年,Gentry and Lackmann 2010)。 增加模型分辨率还可以更准确地表示地形特征,这对于模拟旋风与地面相互作用至关重要:当旋风接近陆地时,其强度和轨迹可能会受到局部超图像的显着影响(Tang等人,2014年,2014年,Cécé等,2020)。 这与LaRéunion有关,LaRéunion是一个小型火山岛,两个火山山顶峰值超过3,000米(Barbary等,2019)。 但是,提高分辨率随附2009年,Gentry and Lackmann 2010)。增加模型分辨率还可以更准确地表示地形特征,这对于模拟旋风与地面相互作用至关重要:当旋风接近陆地时,其强度和轨迹可能会受到局部超图像的显着影响(Tang等人,2014年,2014年,Cécé等,2020)。这与LaRéunion有关,LaRéunion是一个小型火山岛,两个火山山顶峰值超过3,000米(Barbary等,2019)。但是,提高分辨率随附