韩国区域重力大地水准面模型是利用重力测量、全球重力势能模型和高分辨率数字地形模型等异构数据开发的。高精度重力大地水准面模型是支持构建高效且成本较低的 GPS 高度系统的基础,它需要许多重力观测数据,这些观测数据由多种传感器或平台获取。特别是航空重力测量在过去三十年中被广泛用于测量地球重力场,以及传统的地球物理表面测量。因此,有必要了解每次重力测量的特征,例如测量表面和所涉及的地形,并将它们集成到引用同一重力场的统一重力数据库中。本论文阐述了将韩国两种可用重力数据(一种是在地球表面获得的陆地数据,另一种是在高空测量的航空数据)结合起来的方法,并展示了基于这些数据的大地水准面模型的可达到的精度。发现由于地面重力数据与航空重力数据性质不同,二者之间存在一定的偏差,而布格回归确定的地形影响可以明显减小这种偏差,因此应将地面重力数据合并为一个统一的数据库。
2000 年加拿大重力大地水准面模型 (CGG2000) 加拿大自然资源部。2001。2000 年加拿大重力大地水准面模型 (CGG2000)。2009 年 3 月 11 日取自 http://www.geod.nrcan.gc.ca/publications/papers/pdf/cgg2000a.pdf Marc Véronneau 大地测量部 加拿大自然资源部 615 Booth Street, Ottawa, Ontario, K1A 0E9 电话。: (613) 992-1988 传真:(613) 992-6628 电子邮件:marcv@nrcan.gc.ca 摘要:大地测量部与卡尔加里大学和新不伦瑞克大学合作,为加拿大开发了一种新的增强型重力大地水准面模型 (CGG2000)。该模型取代了 GSD95 大地水准面模型。CGG2000 是根据三年计划开发的,我们建议采取行动改进理论、数据集和计算过程。新的大地水准面模型遵循 Helmert-Stokes 方案,即根据 Helmert 的二次凝聚法减少重力测量,并使用 Stokes 积分确定大地水准面高度。使用球面近似确定重力测量的所有相关减少。底层全球重力势模型是 EGM96(360 度和 360 阶),它通过改进的球体斯托克斯核贡献高达 30 度和 30 阶的长波长。1D-FFT 程序解决斯托克斯积分。CGG2000 模型已根据加拿大的 GPS/水准仪进行验证。对于分布在加拿大各地的 1090 个基准,平均值和标准偏差分别为 -0.260 米和 0.179 米。部分不匹配可能是由于加拿大主要水准仪网络的系统误差造成的。1 简介 随着 GSD95 大地水准面模型 (Véronneau, 1997) 的完成,加拿大自然资源部大地测量部 (GSD) 与新不伦瑞克大学 (UNB) 和卡尔加里大学 (UofC) 联合制定了三年计划,以开发下一个模型。三年计划 (Pagiatakis, 1996) 规定了三个机构在大地水准面理论、所需数据和计算过程方面应采取的行动。主要目标是为加拿大开发一个精度为 1 厘米的大地水准面模型。即使目前的数据集可能无法让我们达到这样的精度,至少理论是在这个水平上发展的。确定精度为 1 厘米的大地水准面模型将使通过空间技术进行高度测定的现代化。(1999 年)。例如,当大地水准面模型与全球定位系统 (GPS) 技术相结合时,与传统的水准测量方法相比,它提供了一种成本高效的方法。此外,当大地水准面模型与卫星测高数据相结合时,它对海洋学家确定海面地形和洋流非常有益。本文回顾了用于确定 CGG2000 大地水准面模型的程序。第 2 至 7 节总结了加拿大新大地水准面模型背后的理论、假设和近似值。CGG2000 的理论主要源自 Martinec (1993 年和 1998 年) 和 Vaníček 等人。第 2 节讨论了 Bruns 公式,即位势和大地水准面高度之间的关系。第三部分是大地水准面的赫尔默特异常的推导。在第 4 和第 5 节中,我们描述了用于全局评估斯托克斯积分的方法。第 6 节提到了确定平均赫尔默特异常的程序。最后,在第 7 节中,主要和次要间接效应完成了 CGG2000 大地水准面模型的理论。接下来的两节涉及 CGG2000 大地水准面模型的数据和验证。第 8 节简要介绍了用于确定 CGG2000 大地水准面高度的重力数据和数字高程模型。第 9 节讨论了 CGG2000 大地水准面模型与加拿大 GPS/水准测量的验证,以及 CGG2000 与美国最新大地水准面模型的比较。最后,最后一节构成了本文的结论和讨论。
摘要。2014 年,在丹麦技术大学国家空间研究所 (DTU-Space) 的技术支持下,使用陆地重力、航空重力、海洋卫星测高和 GOCE 任务第 5 版的最新卫星重力数据,为菲律宾计算了一个初步的大地水准面模型,即菲律宾大地水准面模型 2014 (PGM2014)。计算过程中使用的数字地形模型基于 15 英寸 SRTM 数据。该模型在全球垂直参考系统中计算,然后拟合到 ITRF GNSS/水准测量并用 0.50m 的 RMS 值进行验证。2016 年,使用重新处理和加密的陆地重力数据(从 1261 个点到 2214 个点),将 PGM2014 重新计算为 PGM2016。重新处理的重力数据和 GNSS/水准测量(RMS = 0.040m)中可以看到显著的改进。 2017 年至 2020 年期间,将进一步将城镇中的陆地重力密度增加到 41,000 个点,以完善大地水准面。随着新重力数据的出现,将对新版本的大地水准面进行重新计算。DTU-Space 和哥本哈根大学尼尔斯玻尔研究所开发的 FORTRAN 程序的 GRAVSOFT 系统用于计算菲律宾大地水准面。简介点的垂直坐标(即高度)指的是称为垂直基准的坐标表面。垂直基准的通用选择是大地水准面 - 正高和动态高度的参考表面(Vanicek,1991 年)。它是一个等位水平
本文介绍了匈牙利第一个精度极高(厘米级精度)的大地水准面。该重力大地水准面的计算基于最新的重力位模型:EGM2008(2008 年发布的地球重力模型)。计算这个新的重力大地水准面所用的方法是卷积形式的斯托克斯积分。对格网重力异常应用了地形校正,以获得相应的减小异常。还考虑了间接影响。因此,计算出了一种新的大地水准面模型,并将其作为 GRS80(1980 年大地参考系统)中的数据网格提供,该模型分布在研究区域,纬度 45 至 49 度和经度 16 至 23 度之间,分布在 161x281 规则网格上,网格大小为 1.5’x1.5’。将这种新的高精度大地水准面和全球大地水准面 EGM2008 与匈牙利 18 个 GPS/水准点测得的大地水准面起伏进行比较。新大地水准面的精度和可靠性有所提高,与全球大地水准面相比,它能更准确地拟合这些 GPS/水准点的大地水准面高度。此外,这种新大地水准面的标准偏差(3.6 厘米)小于迄今为止为匈牙利(及其周边地区)开发的任何大地水准面的标准偏差。为匈牙利获得的这个大地水准面将补充为一些欧洲国家获得的高精度大地水准面,因为新的大地水准面和其他大地水准面将共同提供欧洲高精度大地水准面的完整图景。这个新模型将有助于通过 GPS 在该研究区域进行正高测定,因为它将允许在山区和偏远地区进行正高测定,而这些地区的水准测量存在许多后勤问题。关键词:重力、大地水准面、FFT、GPS/水准测量、匈牙利
摘要 本文研究了航空重力数据对美国科罗拉多州山区重力大地水准面建模改进的贡献。首先,对航空重力数据进行处理、过滤和向下延拓。然后,准备三个重力异常网格;第一个网格仅来自地面重力数据,第二个网格仅来自向下延拓的航空重力数据,第三个网格来自组合向下延拓的航空和地面重力数据。使用最小二乘修正斯托克斯公式和加性校正 (LSMSA) 方法确定具有三个重力异常网格的重力大地水准面模型。在 GNSS/水准点上估计了计算的重力大地水准面模型的绝对和相对精度。结果显示,与仅根据地面重力数据计算的大地水准面模型相比,使用航空和地面重力数据进行大地水准面计算时,精度在标准偏差方面提高了 1.1 厘米或 20%。最后,对表面重力异常网格和大地水准面模型进行了光谱分析,这为了解航空重力数据贡献并改善功率谱的特定波长带提供了见解。
2.重力测量网络建设和重力测量,包括地拉那-都拉斯地区所有一阶点、二阶和三阶重力测量。在地拉那-都拉斯地区创建大地水准面。在阿尔巴尼亚建设二阶国家 GNSS 网络和国家重力测量网络(300 点)。在阿尔巴尼亚建立第一个大地水准面模型
IGFS 是一项新的统一“伞状” IAG 服务,它将协调重力场相关数据的收集、验证、归档和传播、重力场活动相关软件的交换以及与地球重力场有关的课程、信息材料和一般公众宣传。IGFS 的总体目标是协调大地测量和地球物理界重力场相关数据、软件和信息服务。IGFS 实体数据的组合数据将包括卫星衍生的全球模型、陆地、机载、卫星和海洋重力观测、地球潮汐数据、GPS 水准数据、地形和水深测量的数字模型,以及卫星测高仪的海洋重力场和大地水准面。重力场的静态和时间变化都将由 IGFS 覆盖。 IGFS 不直接处理重力场数据分发 - IGFS 将作为以下重力场相关 IAG 服务的统一服务 - “IGFS 中心”:BGI(国际重力局 - 重力数据的收集、存档和分发)、IGeS(国际大地水准面服务 - 大地水准面模型的收集和分发、大地水准面学校、ICET(国际地球潮汐中心 - 全球地球潮汐数据的收集和存档)、ICGEM(国际全球地球模型中心 - 卫星和表面球谐模型的分发)、IDEMS(国际 DEM 服务 - 全球 D