katriona.edlmann@ed.ac.uk • 英国和欧盟的大多数净零情景都包含氢气的贡献,这些情景到 2050 年将达到净零排放。 • 英国净零排放战略的情景建模表明,即使在高电气化情景中,到 2050 年也需要 240 TWh/y 的氢气,而对于包括供热氢气在内的高资源情景,氢气需求将上升至 500 TWh/y。 • 国家电网未来能源情景表明,即使在消费者转型情景(高电气化)中,到 2050 年也需要 113 TWh/y 的氢气,而对于包括供热氢气在内的系统转型情景,氢气需求将上升至 591 TWh/y。
一般地质和地质研究(域A)[注:以下给出的示例仅是描述性的,不是包含全包的项目列表] A-1。地球系统和过程A-1.1地球历史A-1.2地球系统(例如地球,水圈,大气层,生物圈)A-1.3地质周期和过程(例如,岩石类型,板块构造)A-1.4的水平周期和过程(例如,蒸发,蒸发,降水量,质量源)(E. GEORNES ACERES和CYC,E.平衡)A-1.7碳循环A-2。地质信息的来源A-2.1政府机构(例如USGS,USDA,NRCS,州地质调查)A-2.2科学文献(例如,经过同行评审的出版物,地质实地考察出版物,地质实地考察出版物,研究生论文)A-3。地质和地球物理工具,技术和解释A-3.1地下调查(例如,钻孔,岩石芯,土壤采样)A-3.2岩石和土壤日志记录以及描述A-3.3表面和井眼地球物理学(例如,地震反射/反射/反射,电阻,gpr,gpr,gpr,televiever,televiewer)。字段注释,文档和记录保存A-5。全局定位,坐标系统和基准A-5.1坐标系统和基准(例如类型和应用程序)A-5.2全局定位系统(GPS)A-5.3测量精度和精度A-6。比例尺和比例分析A-6.1量表类型,应用和分析A-6.2水平和垂直尺度和关系(例如垂直夸张)A-7。遥感,图像分析和地理信息系统A-8.1航空影像和摄影测量A-8.2遥感(例如,红外,雷达图像,卫星图像以及光检测和范围(LIDAR))表面和地下映射和地图应用A-7.1地形图,斜率和配置文件A-7.2地质图,符号和应用A-7.3罢工和倾斜,显而易见,厚度和深度A-7.4 ISOPACH和ISOPACH和ISOCOCOCOCTACH和ISOCOCOCTECTRATION MAPE MAPS A-8。
在陆地遥感中,热惯性很少被使用,因为它的计算涉及注册反照率、昼夜 TIR 和 DEM 图像,并且其值对植被、瞬时云量和风敏感。我们探索了一种技术,其中 ∆ T/ ∆ t ≈ dT/dt(温度变化率)被测量并用于估计热惯性。dT/dt 与昼夜温差成正比,因此与 P 成正比。它可以在短时间间隔内进行测量,从而减少云量、风或降雨干扰实验的机会。它的最大值/最小值在早上或下午,而不是传统方法的中午/午夜。这些特点有助于更好的实验设计。然而,在差分方法中,∆ T 比昼夜方法小得多(~20ºK),因此 ∆ T/∆ t 对测量精度(NE ∆ T)更敏感。因此,NE ∆ T 是恢复 P 能力的更重要限制。本质上,∆ t 必须足够大,使得 ∆ T » NE ∆ T。对于 MASTER 等传感器,NE ∆ T ≈ 0.3 K,并且对于信噪比为 10 或更大的常见表面 ∆ t > 60 分钟。虽然如此低的 SNR 在照片解释中可能是可以接受的,但它降低了 P 定量分析的可靠性;然而,进一步增加 ∆ t 既降低了差分方法的实用优势,也降低了估计 dT/dt 的能力。在本研究中,我们使用 FLIR Systems ThermaCAM S45 TIR 摄像机来评估加利福尼亚州莫哈维沙漠的盐沼(苏打湖)及其周边地区的差异热惯性与昼夜算法的关系。
2000 年 6 月,《特定放射性废弃物最终处置法》(以下简称《最终处置法》)生效。《最终处置法》以日本原子能委员会(AEC)1998 年发布的政策文件《高放废物处置基本方针》和日本核循环开发研究所(JNC)(现日本原子能机构(JAEA))的《日本高放废物地质处置研究与开发第二次进度报告》(JNC,2000a-e;以下简称 H12 报告)为基础;后者汇集了自 1976 年以来 20 多年的研发成果。根据《最终处置法》,日本核废物管理组织(NUMO)于 2000 年 10 月成立,作为高放废物(HLW)地质处置的实施机构。2007 年,《最终处置法》进行了修订,在此基础上,一些类型的长寿命、低发热量废物也被纳入地质处置废物,因此属于 NUMO 的职权范围。这些废物被称为地质处置的 TRU 废物(以下简称 TRU 废物)。《最终处置法》规定的选址过程包括初始文献调查阶段和三个后续阶段:选择初步调查区域 (PIA)、选择详细调查区域 (DIA) 和选择处置库地点 1 。2002 年 12 月,NUMO 向全国发出呼吁,呼吁志愿者市政当局启动处置库选址过程。自 2000 年成立以来,NUMO 一直在开发安全实施处置项目所需的技术,并开展了一系列旨在提高人们对该项目和相关公共关系计划的认识的活动。然而,尽管做出了这些努力,但目前尚未收到任何来自志愿者市政当局的申请,也没有针对特定地点启动任何文献调查。NUMO 正与国家政府、电力公司和其他相关组织一起,尽最大努力获得公众对开始文献调查的认可。鉴于这种情况,日本原子能委员会的政策评估委员会于 2008 年提议 NUMO 应发布一份报告,证明安全实施地质处置的技术可行性。该报告将由外部独立学术机构审查,并定期修订和更新以反映最新知识
➢ 储气筒由 7 个额定压力为 50 MPa 的罐组成 ➢ 每个储气筒可容纳 300 公斤氢气 ➢ 场地可扩大规模以满足需求: ➢ 1 英亩可容纳 136 个储气筒 = 1.35 GWh ➢ 自 2016 年以来,储气筒中的天然气储存设施已成功运行。 ➢ 氢气储存设施计划于 2025 年开放
地质调查技术在优化可再生能源项目的选址和确定适合碳储存的地点以缓解气候变化方面发挥着至关重要的作用。本摘要概述了如何使用地质调查技术来实现这些目标。可再生能源开发,特别是太阳能和风能,需要仔细选择地点,以最大限度地提高能源生产效率并最大限度地减少对环境的影响。地质调查有助于评估地下地质、地形、土壤成分和水文条件等因素。这些调查有助于确定具有最佳风能或太阳能资源和适合基础设施建设的地质条件的合适地点。此外,地质调查对于确定适合碳储存的地点至关重要,碳储存是旨在减少温室气体排放的碳捕获和储存 (CCS) 技术的关键组成部分。地质构造,例如深层盐水层、枯竭的油气储层和不可开采的煤层,可作为捕获的二氧化碳 (CO 2 ) 的储存库。地质调查有助于描述这些地层的特征,以评估它们是否适合长期储存二氧化碳,同时考虑孔隙度、渗透性和密封完整性等因素。优化可再生能源项目和碳储存的选址需要全面了解地下地质和环境条件。先进的地质调查技术,如地震成像、遥感和地球物理调查,对于获取详细的地下数据至关重要。这些技术使科学家和工程师能够评估场地适宜性、评估风险并设计有效的缓解措施。总之,地质调查技术是优化可再生能源项目选址和确定合适的碳储存位置的宝贵工具。通过利用这些技术,利益相关者可以做出明智的决策,促进可持续能源发展并减轻气候变化的影响。
摘要: - 随着可用的地球科学数据在数量和质量上增加,并且处理技术不断发展,纳米比亚地质调查局(GSN)需要整合创新的解决方案,以满足全球标准,并帮助吸引国家投资。通过实施人工智能(AI),GSN可以进一步矿物探索,使地质映射更加准确,并更好地监视环境。大数据分析可以处理大量的地质数据,例如用于矿物电位映射,而先进的地理空间技术为各种利益相关者提供了有关环境和自然危害监控等问题的实时信息。挑战,包括处理复杂数据所需的技术技能和对强大计算机的需求,以及必须解决道德问题,但是通过采用这些新技术,GSN可以为纳米比亚的可持续发展做出贡献。关键字: - 地球科学,纳米比亚地质调查,人工智能,大数据分析,机器学习,地理空间技术
“莫滕是一位企业家,经验丰富的气候技术投资者,也是自然氢风险投资(NHV)的创始人,这是世界上第一个专门从事新兴天然氢行行业的投资基金。该基金在全球范围内投资于勘探和相关技术,并最近完成了对该行业的第二笔投资。他是一位公认的专家,对天然氢行有全面的看法,重点是商业化,市场获取,认证,技术,项目融资,当然还有投资。利用多年的经验跟踪私人天然氢公司,Morten和他的团队最近推出了NHV NATH2Index,这是世界上第一个跟踪10个最相关的公共交易天然氢公司的索引。像一个好祖先一样投资,莫顿实现“盈利影响”的目标是由他渴望“成为一个好祖先”的愿望的投资,以确保他的孩子在宜居的星球上的经济上确保。”
通过解释生物标志物和从9个钻孔中回收的201个样品中的201个样品中的生物标志物数据和热解数据,比较了彭德利,彭德利,彭德利,布里根尼亚和阿恩斯堡泥石的区域特征。石炭纪的海道已被确定为通常构成堤防状况,从而保存海洋和陆地有机物类型的混合物。在海洋带,高海平面和碳酸盐相代表的“海洋”条件下,确定芳基 - 异跨性别的光学区缺氧是持久性的。在样品中以及与其他成熟参数内的映射和T S /T M比的观察和相关性突出了样品中显着的粘土矿物催化和 /或碳氢化合物保留效应。这影响了生物标志物和最大热成熟度数据,从而降低了这种结果解释埋葬并最终保留潜力的可靠性。
此信息为初步信息,可能会进行修订。提供此信息是为了满足及时获得最佳科学成果的需求。提供此信息的条件是美国地质调查局和美国政府不对因授权或未经授权使用该信息而造成的任何损害承担责任。