基于监视数据的历史匹配将使不确定性减少,从而改善了工业规模的碳存储操作中的含水层管理。在传统的基于模型的数据同化中,对地理位置参数进行了修改,以在流量模拟结果和观察结果之间进行强制一致。在数据空间反转(DSI)中,历史匹配量的关注量,例如后压力和饱和磁场,以观察为条件,而无需构造后几何模型而直接推断出来。这是使用一组(1000)先前的仿真结果,数据参数化和贝叶斯设置后的后取样来有效完成的。在这项研究中,我们(在DSI中)开发和实施了基于深度学习的参数化,以在一组时间步长下代表时空压力和CO 2饱和场。新的参数化使用对抗性自动编码器(AAE)来减小尺寸和卷积长的短期内存(ConvlstM)网络来表示压力和饱和场的空间分布和时间演化。此参数化在DSI框架中使用多个数据同化(ESMDA)的集合更加顺畅,以实现后验预测。一个现实的3D系统,其特征是从一系列地质场景中提取的先前地质实现。引入了局部网格完善过程,以估计历史匹配公式中出现的误差协方差项。使用新的DSI框架为多个合成真实模型提供了各种数量的广泛历史匹配结果。在所有情况下,都达到了后压力和饱和场的大幅度不确定性。该框架还用于有效地为一系列误差协方差规范提供后验预测。使用传统的基于模型的方法,这种评估将非常昂贵。
摘要 航空电磁 (AEM) 数据已被证明可用于近地表地质测绘,而且在世界范围内收集的数据越来越多。然而,将测量的电阻率数据转换为岩性数据并不是一件简单的任务。因此,充分利用这些数据仍然具有挑战性。在进行成功的地质解释和构建合理的 3D 地质模型之前,必须考虑许多限制。在本文中,我们提出了一种对 AEM 数据进行 3D 地质建模的方法,其中将这些限制与认知和知识驱动的数据解释一起考虑。建模是通过使用体素建模技术和为此目的开发的工具迭代执行的。基于 3D 电阻率网格,这些工具允许地质学家选择定义 3D 模型中任何所需体积形状的体素组。八叉树建模的最新发展确保使用有限数量的体素进行精确建模。
匹兹堡,宾夕法尼亚州,15213年,美国摘要我们探讨了将生物质能源系统与碳捕获和固存技术相结合的技术可行性和经济含义,从而导致具有负净大气碳排放的能量产品。这代表了基于生物质的碳减少措施的有效策略和一种抵消经济其他地方排放源的机制,从根本上改变了生物量在实现深度排放减少中的作用。我们开发了基于IGCC和生物乙醇技术的两个潜在系统的粗糙工程经济模型。这些模型的结果为与更常规的缓解技术进行了比较提供了基础。此比较表明,根据生物质原料成本,具有碳捕获的生物质技术可能与电力部门的其他缓解选择具有竞争力。不管这种部门的吸引力如何,具有CO 2隔离的生物质能量系统产生的排放量可能比电动部门以外的许多直接缓解选择更具成本效益。引言生物质长期以来一直被研究为(几乎)CO 2中性替代物化石燃料的中性替代品,也可以通过隔离陆地生态系统中的碳来抵消工业排放的一种手段[1]。最近,通过CO 2捕获和隔离(CCS)使用化石燃料而不碳排放的化石燃料已成为减轻大气排放的重要替代方法。该策略的吸引力源于其与现有能源基础设施的兼容性。将CCS技术与生物量能源系统(Biomass-CC)相结合,将产生有用的能量产物,并有效地从天然碳循环中删除CO 2的地质时间标准。CCS技术开发的主要重点是提供一种机制,可以从当前的化石能源资源的当前组合中大大减少大气碳排放。此外,CC可以与生物质能源系统集成。在此应用中,在生产过程中固定在生物质中的大气碳被捕获并隔离大气,从而导致净碳汇或负净排放。尽管它仍然在很大程度上尚未探索,但几个因素使生物量-CCS成为碳降低策略组合中的有吸引力的选择:(i)从生物质CCS系统中减少大气CO 2的净减少,提供了一种抵消经济中任何地方排放的机制; (ii)系统将
“ HyGéo 是一个创新项目,展示了各地区在化石燃料替代解决方案方面的专业知识。前景非常光明。我们很自豪能够维持我们当地的财富,并支持部署新的氢气储存系统,以应对我们面临的新环境挑战。” 阿兰·鲁塞特——新阿基坦大区议会主席 HyGéo 是一个独特的机会,可以发展法国在地球科学和能源方面的混合专业知识。它的目的是成为更广泛部署绿色氢解决方案的起点,动员地区公司走向新阿基坦的能源自主。这种部署是实现雄心勃勃的区域、国家或欧洲能源转型目标的可行和现实的解决方案。” 在法国海外领土和国外启动了几个具体的项目后,我们很高兴继续在我们地区部署。与 Teréga 的合作基于我们的互补性和快速投入运营的愿望。为大规模可再生能源储存铺平道路真是太棒了! “
摘要:针对地质环境及灾害特点,本文利用微电子、无线通信、薄膜太阳能供电等技术,结合轻量化工艺设计,提出了一种基于LoRa的地质灾害快速监测系统新方案。该系统基于STM32F103嵌入式微处理器和LoRa的SX1278模块,采用星型自组网设计,构建通信距离远、数据传输稳定可靠的监测系统。系统可实现灾体多项监测参数的实时数据采集,并通过LoRa/GPRS/北斗卫星将监测数据传输到数据中心或专用数据接收终端,为专家分析决策提供数据支持。该系统具有功耗低、传输距离远、自组网、通信稳定可靠等特点,在地质灾害监测领域具有广泛的应用前景。
Omid Shahrokhi博士是地质能源和碳存储的研究员,并拥有石油工程学博士学位,重点是多孔介质中多相流的物理学。他的研究重点是采用地下存储能力来生产低和零碳排放能源。自2018年以来,当他加入碳解决方案研究中心(RCC)作为博士后研究员时,他一直在研究解决方案,以优化永久性CO 2和地下储层中的临时氢存储。他的最终职业目标是通过告知政策决策和最佳使用地下资源来最大程度地减少能源过渡的经济成本(即将碳排放量减少到零)。他目前正在与英国地质调查局合作,并由曼彻斯特大学领导。
摘要:CO 2地质存储是减少碳排放和温室效应的重要手段之一,它是地球科学研究的新兴领域。选择注射速率对CO 2存储容量有重要影响,并且受注射时间和施工条件的限制,因此选择速率的选择是一个复杂的优化问题。在本文中,基于动态计划计算的最佳注入站点用于注射模拟,基于碳固存的注入速率优化问题被转化为差异进化问题,并且通过不同的差异方法优化了该问题。在挪威Sleipner项目中的Utsira街区。在此基础上,研究了注射率对存储容量和泄漏的影响,并设计了不同注入率下的数值模拟。因此,它为CO 2地质存储中的注射率选择提供了理论指导。
以初始 N2/CO2/CH4 作为缓冲气体的 H2 循环 其他气体在类似情况下的表现: • N2 比 H2 便宜 10 倍 • CH4 几乎免费。 • CO2 封存对项目来说是一个积极的总体因素
摘要:德国的能源供应正在发生深刻的变化。本文探讨了德国在地质地下储存可再生能源过剩能源的潜力。风能和太阳能电力可以转化为氢气,二氧化碳随后转化为甲烷。需要时,燃气轮机发电厂燃烧甲烷可回收电力。在这里,我们考虑了德国天然气的实际储存能力,并表明所概述的技术已准备就绪且具有经济竞争力。目前,甲烷和二氧化碳联合储存的潜力可以储存约 80 TWh 的可再生过剩能源。这远远超过了迄今为止的需求,预计到 2050 年将提供全部覆盖。
能源的历史是从效率低下,更脏,昂贵的选择中逐步替换,更清洁,更便宜,更有表现的燃料。磨坊和机器取代了体力劳动,最近电力取代了煤油,该煤油取代了鲸油以进行照明,煤炭代替了工业和供暖建筑物的木材。但是气体呢?一个世纪前,城镇天然气是通过燃烧的煤炭,生产可乐和甲烷和氢的混合物制造的,以及沿途的有毒气体,例如CO和其他污染物。后来,发现了大量的天然气储量(主要由甲烷组成),既便宜又清洁,因此我们停止了制造城镇天然气。由于甲烷的效用,丰富性和负担能力,它几乎用于社会的每个部门。今天,天然气用于加热,烹饪,发电,以及制造诸如化学物质和塑料之类的材料。