客户和承包商也应建立保证机制。保证机制是一种活动、流程或行动(例如审计或验证活动),它提供信心和确认,即 HSE-MS(或 HSE-MS 的任何部分)正在实现其目的并达到或超过预期绩效。这些保证机制在每个阶段实施的类型和程度可能因管理工作的 HSE-MS、承包模式、与工作相关的风险以及各个客户公司的风险承受能力而异。
根据《规约》第三条 A 款和第八条 C 款的规定,原子能机构有权促进原子能和平利用方面的科学技术信息交流。原子能机构核能系列出版物提供核能、核燃料循环、放射性废物管理和退役等领域的信息,以及与上述所有领域相关的一般问题。原子能机构核能系列的结构包括三个层次:1 — 基本原则和目标;2 — 指南;3 — 技术报告。《核能基本原则》出版物描述了核能和平利用的基本原理和愿景。《核能系列目标》出版物解释了在不同实施阶段各个领域要满足的期望。《核能系列指南》就如何实现与核能和平利用有关的各个主题和领域相关的目标提供了高级指导。核能系列技术报告提供了有关国际原子能机构核能系列所涉及各个领域活动的更多、更详细信息。国际原子能机构核能系列出版物的编码如下:NG — 一般;NP — 核电;NF — 核燃料;NW — 放射性废物管理和退役。此外,国际原子能机构的网站上还提供英文版出版物:
人工智能(AI)和机器学习(ML)在地球物理学领域的迅速发展,创造了绘制和建模地球的新前景。这些数据驱动的方法是有用的辅助功能,尤其是在地球科学中基于物理的建模,仿真和反转的辅助功能。考虑到这一点,CSIR国家地球物理研究所(CSIR-NGRI)正在组织AI&ML的高级培训计划,以进行地球物理数据分析。该培训计划旨在使来自学术界和行业的国际/国家专业人员讨论机器学习的挑战,机遇和趋势以及对地球物理应用的人工智能。培训计划的重要结果是向学术和研发学院的参与者提供动手培训。
新组织的车站散布在北极区域:两个俄罗斯车站 - 在Malye Karmakuly(位于Novaya Zemlya群岛)和Sagastyr岛(位于Lena河的三角洲);美国车站 - 在巴罗角(阿拉斯加)和康格堡(加拿大富兰克林湾);德国车站 - 金田峡湾(BAFFINLAND);以及威尔切克·塔尔(Jan Mayen岛)的奥地利 - 匈牙利车站。荷兰探险队在迪克森岛和卡拉海的船只上工作;芬兰探险队 - 在芬兰(芬兰); Bossecop(挪威)的挪威探险队;丹麦探险队 - 在格陵兰岛的戈德塔布(Godthaab);和英国探险 - 在加拿大雷堡(Troit-Skaya,1955年)。IPY是将不同的地理探险转变为复杂的科学研究的第一次尝试。因此,获得了有关冰,天气条件,地磁现象和极地灯的独特数据,然后构成了地理物理学家进一步合作长期活动的基础。第二个国际极性年是在50年后组织的。在低太阳活动时期,它持续了1932年8月至1933年9月。这项研究的结果与第一个IPY的主动太阳时期的数据相比,它们具有很大的兴趣。第二个IPY将来自44个国家 /地区的科学家聚集在一起。第二个IPY的计划是由国际年度委员会制定的,由10
致谢。作者谨感谢与奥地利洪流和雪崩控制服务局 (WLV)、上奥地利州分局(特别是 Wolfgang Gasperl 和 Harald Gruber)以及 Centro Servizi di Geoingegneria、Ricaldone(意大利)和 ZT Büro Moser/Jaritz、Gmunden(奥地利)的出色合作。地球物理测量得到了 FP7 项目“SafeLand – 与欧洲的山体滑坡风险共存”的支持,该项目持续了 20 年
抽象的地球物理观察将提供有关行星和卫星内部结构的关键信息,并理解内部结构是这些物体的批量组成和热演化的强大结合。因此,地理观测是发现月球起源和演变的关键。在本文中,我们提出了一个自主月球地球物理实验包的开发,该实验包由一套仪器和带有标准化界面的中央站组成,可以安装在各种未来的月球任务上。通过修复仪器与中央站之间的接口,可以轻松地为不同的任务配置适当的实验包。我们在这里描述了一系列可能作为地球物理包装的地球物理仪器:地震计,磁力计,热流探针和激光反射器。这些仪器将提供与内部结构密切相关的月球的机械,热和大地测量参数。我们讨论了未来对月球的地球物理观察所需的功能,其中包括中央站的开发,而中央站通常会通过不同的有效载荷使用。
Tellus 是爱尔兰的一项国家航空地球物理测绘计划,是 2005-2006 年北爱尔兰 Tellus 调查的后续工作,首次调查于 2011 年在爱尔兰进行。从那时起,年度调查区块一般都向南延伸至全国。Tellus 计划的最新阶段收集了南爱尔兰(蒂珀雷里郡、基尔肯尼郡、莱伊什郡和沃特福德郡)和科克郡两个新区块(A8 和 A9)的航空数据,分别称为 A8 区块和 A9 区块。Sander Geophysics Ltd (SGL) 于 2020 年 9 月 20 日至 2021 年 7 月 15 日(A8)和 2021 年 7 月 25 日至 2021 年 9 月 21 日(A9)期间进行了调查。此前,在 2005 年和 2006 年,在北爱尔兰(Tellus)地区(Beamish 等,2006 年)、爱尔兰共和国卡文郡和莫纳汉郡的部分地区(Kurimo,2006 年)、作为欧盟 INTERREG IVA 资助的 Tellus 边境项目的一部分的多尼戈尔郡、利特里姆郡、斯莱戈郡、卡文郡、莫纳汉郡和劳斯郡(Hodgson 和 Ture,2012 年)、作为 Tellus 北米德兰兹项目的一部分的罗斯康芒郡、朗福德郡和韦斯特米斯郡(Hodgson 和 Ture,2015 年)、在该国东部的米斯郡、都柏林郡、基尔代尔郡、奥法利郡、莱伊什郡和威克洛郡(A1 区块)的部分地区(Hodgson 和 Ture,2016 年)以及爱尔兰2016 年在戈尔韦 (A2 区块) (Hodgson 和 Ture,2017 年) 和 2017 年在梅奥郡和多尼戈尔郡 (A3 和 A4 区块) (Hodgson 和 Ture,2018 年) 进行,2018-2019 年在利默里克郡和科克西部 (A5 和 A6 区块) (Hodgson、Ture 和 Muller,2019 年) 进行,2019 年在韦克斯福德郡、威克洛郡、基尔代尔郡和卡洛郡 (A7 区块,爱尔兰东南部) 进行。最新阶段的航空勘测,A8 和 A9 区块由驻扎在沃特福德机场的同一架飞机执行。所有勘测都测量了磁场、电导率和伽马射线光谱仪数据(主要是钾、钍和铀)。本报告总结了最新 A8 和 A9 勘测的主要操作,并讨论了获取的数据的处理及其与现有数据集的合并以生成无缝合并的地球物理数据集。A6 区块(科克西部)与 A9 有少量重叠,并包含在当前数据的合并中。然而,预计在完成后续勘测区块后,A6 将能够进行更好的约束合并,这将与 A6 提供更大的重叠。以下 SGL 数据交付编号分别提供了 A6、A8 和 A9 区块的合并数据;磁学数据:DLV2160、DLV2420、DLV2554;放射性测量数据:DLV2161、DLV2419、DLV2433;电磁学数据:DLV2159、DLV2421、DLV2439。致谢 在调查过程中,GSI 的 Emma Scanlon 和 Margaret Browne 以及公关公司 RPS 帮助成功开展了外展计划。感谢 SGL 的工作人员在整个调查期间的辛勤工作。
2) 勘察地点和规格 Matheson 勘察区位于安大略省东北部(图 1)。它与 Kirkland Lake 勘察区(地球物理数据集 1102)区块 A 的北部边界相连。它横跨太古代阿比蒂比亚省北部的 Destor-Porcupine 断层带,包括变火山岩、变沉积岩和各种(超)镁铁质侵入岩。该地区的冰川覆盖层覆盖面积广阔,厚度达到 20 至 30 米,包括大量粘土覆盖层。寻求的矿产包括黄金、科马提岩铜镍、与侵入有关的铜镍铂族元素、火山成因块状硫化物和可能含有钻石的金伯利岩。 MNDM 选择安装在固定翼平台上的 Spectrem 2000 时间域电磁和磁系统进行调查。
相对评估了四种地球物理方法的检测地下异常/空隙的能力,即电阻率层析成像(ERT),表面波的多通道分析(MASW),地面穿透性雷达(GPR)(GPR)和全波形倒置(FWI)。我们发现: ERT非常适合检测和定位地下异常,但可能无法准确大小或表征异常/空白的材料组成; b。在大多数现实的现场条件下,MASW是不合适的。 c。基于计算模拟,FWI似乎合适,并且可能满足现场条件的需求,但是该功能未测试。和d。由于深度限制,GPR在异常检测中的能力非常有限,它缺乏一致性,并且很大程度上取决于操作员的经验。即使检测成功,使用GPR的异常大小和表征也是不可行的。给定大多数基础架构项目常见的现场现实,我们建议继续使用ERT检测地下异常/空隙。我们还建议将来的研究努力集中在a上。联合发生和基于多物理的方法; b。软件开发。