不可避免地,ECC 未来的地下水使用将对现有的含水层系统造成额外压力。因此,重新评估以前绘制的含水层、潜在地定位未绘制的含水层并实施管理策略以确保地下水资源可供未来使用至关重要。由于管理策略和决策工具需要更准确的地质和水文地质模型,因此需要创新的数据收集方法。在复杂的地质地形中,例如 ECC,人们对冰川沉积物内以及冰川沉积物与下层基岩之间的水力通道了解甚少,因此需要对冰川沉积物和基岩进行连续高分辨率地质测绘,以更好地理解和说明地质地层的结构。更好地了解 ECC 内的地质结构将有助于改进地质建模,从而有助于建立更好的 ECC 水文地质模型。预计该模型将成为众多应用的基石,例如地下水勘探计划、含水层保护研究和重要补给区识别。更重要的是,该模型将形成地下水流建模练习和未来水预算计算的框架,从而改善水管理决策。
机会 - 地质和地球物理特性在全球范围内的地质机器学习,我们对地球特性的集体理解受到直接观察地质的观察(例如,井原木,核心等)或间接通过遥感(例如地球物理或卫星观测)。这一事实导致在高空间分辨率(至sub-km量表)处的地球特性的稀疏数据集,或者从卫星观测值中产生了一个连续但低分辨率的数据集。因此,需要自动插值(例如Kriging)和/或人类知情轮廓,以在高分辨率下持续了解这些属性。在这项工作中,我们致力于改进这些方法。利用机器学习,深度学习和/或物理知情神经网络(PINN)的新发展,我们可以在空间和深度上智能插入或预测地球参数。这项工作利用了地质观察的各种数据源(即“大数据”),例如:科学钻孔,挖出和疏ed和地球物理观察,例如由乘员船(例如,船舶),自主平台(例如,AUV)(例如,AUV)和Satellites和Satellites和Satellites和Satellites和Satellites。我们将这些数据集与基于物理学的地质过程模型(例如压实)和数据驱动方法(例如机器学习)结合使用,以产生对地球特性的连续且准确的估计。这些方法的示例包括从稀疏的船板观测值中预测连续的重力场,或使用核心数据预测沉积物岩性与深度。鼓励基本的地质理解,但不需要。我们寻求具有地质/地球物理学经验的合格申请人,遥感/地理位置,机器学习/数据科学和/或运输/摇滚物理建模。申请人将有一些计算经验,并且在基本的编程/脚本中保持舒适(不需要特定语言)。实验室地点:海洋科学部海军研究实验室Stennis Space Center,MS POC:Benjamin Phrampus海军研究实验室,代码7352建筑物1005 Stennis Space Center,MS 39529电话:228-688-4899电子邮件:Benjamin.phrampus.civ@us.civ@us.navy.mil
不可避免地,未来在 ECC 中使用地下水将给现有的含水层系统带来额外的压力。因此,重新评估以前绘制的含水层、可能定位未绘制的含水层并实施管理策略以确保地下水资源可供未来使用至关重要。由于管理策略和决策工具需要更准确的地质和水文地质模型,因此需要创新的数据收集方法。在复杂的地质地形中,例如 ECC,人们对冰川沉积物内以及冰川沉积物与下层基岩层之间的水力通道了解甚少,因此需要对冰川沉积物和基岩层进行连续高分辨率地质测绘,以更好地理解和说明地质层的结构。更好地了解 ECC 内的地质结构将有助于改进地质建模,从而有助于更好地建立 ECC 的水文地质模型。预计该模型将成为众多应用的基石,例如地下水勘探计划、含水层保护研究和重要补给区识别。更重要的是,该模型将形成地下水流建模练习和未来水预算计算的框架,从而改善水管理决策。
克 (g) 0.03527 盎司,常衡 (oz) 摄氏度 (°C) 的温度可以按如下方式转换为华氏度 (°F):°F=(1.8×°C)+32 除非另有说明,电导率以毫西门子每米 (mS/m) 为单位 除非另有说明,电阻率以欧姆米为单位 1 mS/m = 1000/ ( 1 欧姆米) 因此 10 mS/m = 100 欧姆米 垂直坐标信息参考“1988 年北美垂直基准 (NAVD 88)”,除非文中另有说明 水平坐标信息参考“1984 年北美基准,通用横轴墨卡托第 14 区 (NAD 84 UTM 区 14N)”,除非文中另有说明 GPS 数据的航空地球物理调查参考为 WGS84,如文中所述 主页文本给出了数据投影的描述,使用 din 采集和处理本报告中使用的首字母缩略词:EM 电磁 DTM 数字地形模型 GPS 全球定位系统 HEM 直升机电磁 RTP 简化到极点 USGS 美国地质调查局 UTM 通用横轴墨卡托本报告中使用的缩写:Hz 赫兹 kHz 千赫兹
摘要。我们探讨了模型的对流层羟基(OH)浓度趋势的敏感性,对陨石和近期气候锻炼(NTCFS),即甲烷(CH 4)氮氧化物(no x = no x = no x = no 2 + no 2 + no)碳二碳(CO),非甲氧化型和异源性有机型(NM)。 (ODS),使用地球物理动力学实验室(GFDL)的大气化学 - 气候模型,由第六次耦合模型对比计划(CMIP6)开发的排放清单(CMIP6)驱动的大气模型4.1版(AM4.1),并由经过的经验的Sater Surpery Project (AMIP)模拟。我们发现,从1980年到2014年,全球模型的对流层空气加权平均值[OH]增加了约5%。我们发现,没有X排放和CH 4浓度主导着建模的全球趋势,而CO排放和流星学对于推动区域趋势也很重要。对流层NO 2色谱柱趋势在很大程度上与从臭氧监测仪器(OMI)卫星中检索的趋势一致,但是模拟的CO列趋势通常高估了从对流层(Mo-Pitt)卫星中污染测量的测量结果,可能会反射出偏见,尤其是派出了派出了越来越多的派出了众多的派出量,尤其是派出了派出了派出的派出。
图1。DIVE-LD Geophysical Survey Build................................................................................. 2 Figure 2.DIVE-LD Geophysical Survey Sensors ............................................................................. 2 Figure 3.Side Scan Sonar, Magnetometer, and Combined Image of Overlapping Cable ................ 3 Figure 4.Mission Control View of Test Area ................................................................................... 4 Figure 5.Dive Spotter Anomalies Detected ...................................................................................... 5 Figure 6.潜水重新启动路径...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................SBP Anomalies Detected ................................................................................................... 7 Figure 8.Manual Control of DIVE-LD from Support Vessel ........................................................... 10
煤层工业组件的含量是煤层甲烷(CBM)储层的主要参数之一,在整个煤矿资源探索和开发过程中至关重要。当前,使用地球物理记录数据来确定工业组件的内容是最广泛的方法。在这项研究中,Qinshui盆地中的PZ阻滞被用作评估Ash(AD),固定碳(FC AD),挥发性物质(V DAF)和水分(M AD)在空气干燥(AD)基础状态下基于地球物理级别的组合(1 compents commential Commenting Comment comment comment commential Commential Commential Commential Commential Commential Commential Commential Commential commential)组合。结果表明1)与OBGM(1,N)模型结合的地球物理记录曲线可以准确预测AD和FC AD内容物以及与使用单个地球物理记录曲线进行预测相比,地球物理日志记录曲线类型可以有效地改善模型性能。2)当预测V DAF含量时,使用与AD和FC AD内容的地球物理记录曲线相结合的预测准确性最高。此外,与仅使用地球物理记录曲线或工业组件内容之间的自相关相比,不存在预测偏差。整个评估过程始于对A AD和FC AD内容的评估。然后,使用这两个工业组件与地球物理记录数据相结合的含量评估了V DAF含量。最后,使用体积模型计算M AD含量。3)OBGM(1,N)模型具有获得了对新井的验证的准确应用结果,证明了本研究中描述的方法和过程的效率。
德国军事地球物理局。鸟类迁徙观察、预警和预报系统:自动鸟类迁徙信息系统的新发展 Dipl. Met. Wilhelm Ruhe,理学硕士 德国军事地球物理局生物学 - 科室 (GU 4) D - 56841 Traben - Trarbach,德国 电话:06541/18734 传真:06541/18767 电子邮件:WilhelmRuhe@awg.dwd.d400.de 摘要 德国军事地球物理局 (GMGO) 在所有鸟击预防领域拥有 30 多年的经验。军事训练和飞行作业通常在低空进行,那里也有很多鸟类,特别是在海岸附近和迁徙期间。大约三分之一的 GAF 鸟击发生在低空飞行作业期间。军事低空飞行中预防鸟击的最有效工具是经过充分验证的系统: • 持续实际鸟类迁徙观察(目视和雷达); • 即时报告; • 集中风险评估; • 在线警告(BIRDTAM); • 立即向空军人员和飞行员分发 BIRDTAM; • 严格管制军事飞行; • 定期进行鸟击风险预测,以用于规划目的。本文概述了德国及其邻近地区自动鸟类迁徙信息系统(AVIS(拉丁语:Bird): “Automatisiertes Vogelzug Informations -System”)的近期和近期发展情况。本文介绍了该系统的重要模块。项目的实际状态如下
Geophysical survey instruments may include side scan sonar (SSS), multibeam echosounders (MBES), magnetometers/gradiometers, shallow (parametric subbottom) and medium (sparker) penetration single or multi-channel subbottom/seismic profilers, and all support systems (e.g., positioning, motion sensor, compass, sound velocity profiler [SVP]) as以及高分辨率的视觉成像系统(例如,水下摄像头)和被动声监测(PAM)系统。要使用的行业标准调查等级系统包括但不限于以下系统(或同等学历):
在1957年的国际地球物理年度建立了应用地球物理学系。从那时起,它已成为该国最重要的地球物理部门之一,授予了优质的教学和研究。该部门配备了最先进的地球物理仪器,其中包括所有地球物理学科。该部门设有一个具有宽带记录设施的地震观测设施,以及许多实验室,例如地球物理倒置,地球物理仪器,岩石和岩石物理学,地震数据处理,煤炭地球物理学,全球优化和深度学习,遥感和重力感应和重力磁性。该部门参与了不同的尖端研究领域,目前,它有一个雄心勃勃的计划,可以在非常规烃,矿产勘探,AI和自然资源和自动化自然资源和可持续性,自然危害,自然危害和缓解,缓解,早期战线,tsunami/tsunami tsunami predational-Predictical predatife and oflognwerswordswordswortsword和Shocterwordswordsword和Shocterwordsword和Shocterwordsword和Shocterwordswort的领域中建立一些新的卓越中心。
