研究中的学术生产力:迄今为止,至少有40个国际出版物(请参阅:https://athscinet.ams.org/mathscinet/author?authorid = 636028)在巨大的声望和影响力在代码和密码理论领域的巨大声望和影响力中。 div>inf理论(IEEE信息理论协会),有限领域及其应用(Elsevier),设计,代码和密码学(Springer),离散应用数学(Elsevier),密码学和通信(Springer),杂志上的离散期刊计算机科学(Springer)中的数学(暹罗期刊)和讲义。 div>直到今天,这些出版物至少有259种A型引号(不是自我社会)。 div>其中几种引用出现在书籍或论文中,其中一些用西班牙语和英语以外的语言写成。 div>有关更多信息:
纠缠纠缠的探针,纠缠的物质Gerardo Ortiz物理系,印第安纳大学,布卢明顿,47405,美国,美国Quantum Science and Engineering Center,Indiana University,Bloomington,47408,美国量子量子计算机研究所47408潜在的微观机制引起了异国情调的宏观现象,例如高温超导性。量子纠缠探针可以揭示目标物质的固有纠缠吗?我们最近[1-3]开发了一个纠缠的中子束,其中可以用自旋,轨迹和能量纠缠单个中子。为了证明这些光束中的纠缠,我们制定了情境不平等的中子干涉测量测量,其违规表明了爱因斯坦当地现实主义的崩溃。反过来,从纳米到微米到微米的中子束的可调节纠缠(自旋回波)长度以及从PEV到NEV的能量差异为物质中纠缠中子散射的未来时代打开了途径。通过这种新颖的纠缠探针可以提取哪种信息?最近的一般量子多体纠缠 - 探针散射理论[4]提供了一个框架来回答这个问题。有趣的是,通过仔细调整探针的纠缠和固有的连贯性能,可以直接访问目标材料的内在纠缠。这个理论框架支持以下观点:我们的纠缠梁可以用作多功能科学工具。[1] J. Shen等。11,930(2020)。我们目前正在追求几个新想法,并使用轨道角动量[5]开发自旋纹理的纠缠梁[5],以在候选量子旋转液体,非常规的超导体和手性量子材料中进行未来的实验。al。,自然界。[2] S. Lu等。al。,物理。修订版A 101,042318(2020)。[3] S. J. Kuhn等。al。,物理。修订版研究3,023227(2021)。[4] A.A. Md。Irfan,P。Blackstone,R。Pynn和G. Ortiz,New J. Phys。 23,083022(2021)。 [5] Q. Le Thien,S。McKay,R。Pynn和G. Ortiz,物理学。 修订版 b 107,134403(2023)。Irfan,P。Blackstone,R。Pynn和G. Ortiz,New J. Phys。23,083022(2021)。[5] Q.Le Thien,S。McKay,R。Pynn和G. Ortiz,物理学。 修订版 b 107,134403(2023)。Le Thien,S。McKay,R。Pynn和G. Ortiz,物理学。修订版b 107,134403(2023)。
摘要 高效的流动性是决策者面临的一个关键问题。允许人员和货物自由流动对于经济繁荣和可持续生活至关重要。汽车、火车、轮船、飞机和太空火箭是让世界各地的差异转化为财富的手段。所有这些系统都被认为是动态系统,自由度越高,它们的多变性和不可预测性就越强。为了在这些复杂的环境中控制操作并应对持续有效的问题解决,需要一个可靠的安排。安全是润滑液,它使这种复杂的运输机器有机会工作和发展。本文的目的是分析航空安全与自动化理念之间的联系,重点关注人机交互,特别是在引入新的飞机制造概念之后。自动化为提高安全性做出了贡献,但最终揭示了一些威胁,必须彻底调查和缓解这些威胁,以避免安全水平下降。