目前的85 Max Planck机构在自然科学,生命科学,社会科学和人文科学方面为公众提供基础研究。Max Planck Institutes专注于搜索特别创新或在资金或时间要求方面特别要求的搜索。他们的研究范围正在连续发展。建立了新的机构,以解决开创性的,开创性的科学问题,而其他机构则关闭,例如,当他们的研究已在大学中广泛建立时。这种持续的更新保留了最大普朗克社会需要迅速对开拓性科学发展做出反应的范围。
工业日,大约200人(主要是学生和博士生)参加,由德国体育社会(DPG)的行业和经济工作组(AIW)组织和执行。活动的目的是激发学生和博士生在商业和行业领域的职业。
IHP GmbH – 莱布尼茨高性能微电子研究所/莱布尼茨创新微电子研究所 – Im Technologiepark 25 – 15236 法兰克福(奥德) – 电话 +49 335 5625-0 – 传真 +49 335 5625-300 – ihp@ihp-micro electronics.com – www.ihp-micro electronics.com
弗劳恩霍夫 IAPT 的研究人员在项目过程中开发了多项创新。其中包括基于 2D 模板的三维植入物设计人工智能计算,目前这项技术已申请专利。工艺技术是另一项特殊的发展:由于植入物轴的结构非常精细,弗劳恩霍夫 IAPT 团队选择使用金属粘合剂喷射钛作为 3D 打印方法。这使得小型复杂的植入物能够以高精度制造。同时,轴的表面可以以更容易融入骨骼的方式构造。此外,该方法最大限度地减少了关节面的返工,关节面必须尽可能光滑和无摩擦。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助类似激光的红外辐射来确定。产生这种波长可调的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子穿过波荡器中的非常强的磁场。这些波荡器使电子产生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并产生红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己典型的振动光谱,就像一个指纹,可以借助于类似激光的红外辐射来确定。产生这种可调节波长的强烈红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子通过被称为波荡器的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子,形成集中的强光束。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,因为该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。
每个分子都有自己独特的振动光谱 - 就像指纹一样,可以借助类似激光的红外辐射来确定。产生这种波长可调的强红外辐射的首选方法是自由电子激光器 (FEL):在真空中,电子首先被加速到接近光速。然后,这些高能电子穿过波荡器中的非常强的磁场。这些波荡器使电子发生波状运动。这会导致电子发射光子——以集中、强烈的光束形式。原则上,自由电子激光器可以产生几乎任何波长的电磁辐射,尽管这通常涉及 X 射线范围内的辐射,该范围具有最短的可能波长。同时,对于 FHI 的实验,需要并生成红外范围内的长波辐射。