摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要 — 在当今的环境中,机械手在军事、国防、医疗和工业领域中发挥着重要作用,即使在烟花制造或炸弹扩散等危险环境中,机械手也可以复制人类的手势来完成任务。本文介绍了一种通过手势识别无线控制机械手运动的突破性方法。通过使用伺服控制、柔性传感器、Arduino Nano 和收发器,收发器捕获的预定义手势可实现用户和机械手之间的无缝实时通信,从而促进远程操作。手势识别技术与机器人技术的这种创新集成为增强人机交互提供了一个令人兴奋的前沿,为无数应用提供了适应性和安全性。
通过在物理空间中玩耍和探索,互动教育空间正在成为一种培养儿童自然学习方式的机制。此类环境的先进互动模式和设备需要对儿童具有激励性和直观性。在各种各样的互动机制中,机器人因其对儿童的吸引力而成为教育工具领域的热门研究课题。然而,很少有研究关注儿童如何自然地与机器人互动和探索互动环境。虽然有大量关于成人全身互动和直观操纵机器人的研究,但还没有对儿童进行过类似的研究。因此,本文描述了一项手势诱导研究,该研究确定了儿童控制地面机器人时使用的首选手势和肢体语言交流。启发式研究的结果用于定义一种手势语言,该语言涵盖了不同年龄段和性别对手势的不同偏好,在 6-12 岁年龄段中具有良好的接受率。该研究还揭示了使用肢体动作的机器人互动空间,这是协作或远程学习活动的激励和有希望的场景。
对与计算机的免提交互的需求不断增长,导致开发基于手势识别的系统,用于控制鼠标和键盘等虚拟输入设备。本文使用计算机视觉技术提出了一种基于手势控制的新方法,在该技术中,手势被捕获并处理以执行鼠标和键盘操作。系统利用实时手势识别算法将特定的手移动映射到相应的动作,例如鼠标运动,点击,滚动和文本输入。通过使用机器学习和图像处理技术,该系统为传统输入设备提供了直观且易于访问的替代方案。所提出的架构设计为强大且适应各种环境,为用户提供无缝的互动体验。该研究还强调了挑战,例如环境噪声,照明条件和手势准确性,同时提出了克服这些局限性的潜在解决方案。该系统在可访问性,辅助技术和免提计算等领域中具有广泛的应用。
摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要:基于手势的交互是一种自然的人机交互方式,在普适计算环境中有着广泛的应用。本文提出了一种基于加速度的手势识别方法,称为 FDSVM(基于帧的描述符和多类 SVM),该方法仅需要可穿戴的三维加速度计。使用 FDSVM,首先收集手势的加速度数据并用基于帧的描述符表示,以提取判别信息。然后构建基于 SVM 的多类手势分类器以在非线性手势特征空间中进行识别。在包含数周内 12 个手势的 3360 个手势样本的数据集上进行的大量实验结果表明,所提出的 FDSVM 方法明显优于其他四种方法:朴素贝叶斯、DTW、HMM 和 C4.5。在用户相关的情况下,FDSVM 对 4 个方向手势的识别率为 99.38%,对所有 12 个手势的识别率为 95.21%。在用户无关的情况下,它对 4 个手势的识别率为 98.93%,对 12 个手势的识别率为 89.29%。与文献中报道的其他基于加速度计的手势识别方法相比,FDSVM 在用户相关和用户无关的情况下均能给出最佳结果。
摘要。人类行动识别在实现人类与机器人之间的有效和安全的合作中起着重要作用。例如,考虑一项协作的组装任务,人工可以使用手势与机器人进行通信,而机器人可以利用公认的行动来预测组装过程中的下一步,从而提高安全性和整体生产率。在这项工作中,我们提出了一个基于3D姿势和合奏技术的人类行动识别的新框架。在这种框架中,我们首先通过敞开和RGB-D数据估算人体和身体关节的3D坐标。然后将估计的接头馈送到一组源自Shift-GCN的图形卷积网络,这是每个关节集(即车身,左手和右手)的一个网络。最后,使用集合方法,我们平均所有网络的输出得分来预测最终的人类行动。在一个名为IAS-LAB协作HAR DATASET的专用数据集上评估了所提出的框架,该数据集包括在人机协作任务中常用的操作和手势。实验结果证明了不同动作识别模型的界面如何有助于提高整体系统的准确性和鲁棒性。
摘要: - 根据国际自动驾驶技术标准,如果要在道路上驾驶自动驾驶车辆,它们必须具有承认交通警察手势的功能。目前,交通警察的手势识别方法主要分为三类,即基于生物电信号,基于传感器的识别和基于机器视觉的识别的识别。本文主要关注传统机器视觉技术在处理动态的交通警察手势时很容易忽略关键坐标和时间功能的情况。本论文提出了一个多层LSTM模型,该模型整合了连续的子中限角度和交通警察的注意力模型。基于MediaPipe,在统一关键点之后,接受融合角度信息的模型的精度比未经角度信息融合的训练的模型更高,并且使用33个关键点训练的模型及其MediaPipe的角度信息比501关键点及其角度信息更准确。最后,根据本文提出的模型,对中国交通警察的手势数据集取得了良好的测试结果。
该项目介绍了通过手动移动控制的手势驱动的智能汽车的设计和实现。该系统采用Arduino微控制器与MPU6050加速度计和陀螺仪传感器配对来检测和解释手势。通过倾斜或移动传感器,用户可以命令汽车向前移动,向后,向左或向右或停止。MPU6050在三个轴(X,Y和Z)中测量加速度和角速度,并且Arduino处理此数据以通过L298N电动机驱动器来控制汽车的直流电动机。这种基于手势的方法提供了免提操作,使其适用于行动率有限或传统控制设备不切实际的情况。手势控制的直观性质简化了用户体验,而系统的交互性则增强了其在机器人技术,教育,娱乐和辅助技术中的适用性。