短波式红外(SWIR)光电探测器对于许多科学和工业应用至关重要,包括监视,质量控制和检查。在近几十年中,基于有机半导体的光电检测器已经出现,证明了为宽带和窄带成像和感应场景增加实际价值的潜力,在这种情况下,诸如热预算敏感性,大面积孔径的必要性,成本考虑因素,轻量级和相结构的灵活性需求等因素优先考虑。现在已经认识到,有机光电探测器(OPD)的性能,尤其是它们的特定检测率,最终受到陷阱状态的限制,陷阱状态普遍存在于无序的半导体中。这项工作采用了一种利用这些中间隙状态来特定创建SWIR照片响应的方法。为此,这项工作引入了在批量异质结(BHJS)光电二极管中“陷阱掺杂”的一种反直觉方法,其中有意将少量的来宾有机分子故意纳入半强化供体中:受体宿主系统。遵循这种方法,这项工作证明了可见的至静宽宽带OPD的概念验证,在关键光电探测器指标中接近(并在某种程度上,甚至超过)最先进的性能。陷阱掺杂方法是,即使目前只有概念验证,它广泛适用于各种光谱窗口。使用将限制变成功能的非常规策略来进行工程光进行的新模式。
主要作者 Behnam Zakeri、Katsia Paulavets、Leonardo Barreto-Gomez 和 Luis Gomez Echeverri 撰稿人 Shonali Pachauri、Joeri Rogelj、Felix Creutzig、Diana Urge-Vorsatz、David Victor、Benigna Boza-Kiss、Caroline Zimm、Sarah Alexander、Friends、Friends、Friends and Friends、David McCollum、Clay Nesler、Michaela Rossini、Varun Sivaram 和 Leena Srivastava
本展望由 IRENA 的可再生能源路线图 (REmap) 和政策团队编写。技术章节(1、3 和 5)由 Dolf Gielen、Ricardo Gorini、Nicholas Wagner、Rodrigo Leme 和 Gayathri Prakash 撰写,Luca Lorenzoni、Elisa Asmelash、Sean Collins、Luis Janeiro 和 Rajon Bhuiyan 也提供了宝贵的额外贡献和支持。社会经济章节(2、4 和 6)由 Rabia Ferroukhi、Michael Renner、Bishal Parajuli 和 Xavier Garcia Casals 撰写。Amir Lebdioui(伦敦经济学院/剑桥大学)、Kelly Rigg(The Varda Group)和 Ulrike Lehr(GWS)也为社会经济章节做出了宝贵的额外贡献。宏观经济模型 (E3ME) 结果由英国剑桥计量经济学会的 Eva Alexandri、Unnada Chewpreecha、Zsófi Kőműves、Hector Pollitt、Alistair Smith、Jon Stenning、Pim Vercoulen 和其他团队成员提供。
致谢本出版物是由Irena的可再生能源路线图(Remap)和政策团队编写的。在Nicholas Wagner,Luis Janeiro,Sean Collins,Maisarah Kadir和Elisa asmelash的支持下,Dolf Gielen,Ricardo Gorini,Rodrigo Leme和Gayathri Prakash开发了1.5°C方案的预览,包括技术途径和投资需求,由Dolf Gielen,Ricardo Gorini,Ricardo Gorini,Rodrigo Leme和Gayathri Prakash开发。社会经济的影响和财务分析是由Rabia Ferroukhi,Ulrike Lehr,Xavier Garcia Casals,Diala Hawila和Bishal Parajuli开发的,并从金斯米尔·邦德(Kingsmill Bond)发表了宝贵的投入。伊丽莎白出版社提供了宝贵的贡献。IRENA experts Paul Durrant, Seungwoo Kang, Martina Lyons, Trish Mkutchwa, Carlos Ruiz (end-use and bioenergy), Emanuele Taibi, Herib Blanco (power system transformation and hydrogen), Francisco Boshell, Arina Anise, Elena Ocenic (innovation and technology standards), Roland Roesch, Gabriel Castellanos, Gayathri Nair,Barbara Jinks(网格整合,绿色的汽油和运输),Asami Miketa(电力部门投资计划),Michael Taylor(可再生能源成本状态和外观),Michael Renner(社会经济经济学)和Costanza Strinati(Costanza Strinati)(可再生能源融资)以及他们的团队和他们的团队以及有价值的支持和评论和评论和评论和评论和评论。Deger Saygin(顾问)也提供了宝贵的意见。irena感谢迈克尔·哈克萨尔(Michael Hackethal),安·卡特林·西基耶尔(Ann-Katrin Siekemeier)和德国联邦经济技术部(BMWI)提供的宝贵见解和评论。irena感谢联邦经济事务和德国经济事务部的慷慨支持,这使该预览文件的出版成为现实。
本展望由 IRENA 的可再生能源路线图 (REmap) 和政策团队编写。技术章节(1、3 和 5)由 Dolf Gielen、Ricardo Gorini、Nicholas Wagner、Rodrigo Leme 和 Gayathri Prakash 撰写,Luca Lorenzoni、Elisa Asmelash、Sean Collins、Luis Janeiro 和 Rajon Bhuiyan 也提供了宝贵的额外贡献和支持。社会经济章节(2、4 和 6)由 Rabia Ferroukhi、Michael Renner、Bishal Parajuli 和 Xavier Garcia Casals 撰写。Amir Lebdioui(伦敦经济学院/剑桥大学)、Kelly Rigg(The Varda Group)和 Ulrike Lehr(GWS)也为社会经济章节做出了宝贵的额外贡献。宏观经济模型 (E3ME) 结果由英国剑桥计量经济学会的 Eva Alexandri、Unnada Chewpreecha、Zsófi Kőműves、Hector Pollitt、Alistair Smith、Jon Stenning、Pim Vercoulen 和其他团队成员提供。
•ACSM(2014)。ACSM的运动测试和处方指南。第九版。Lippincott Williams&Wilkins。•Beutner,F.,Ubrich,R.,Zachariae,S.,Engel,C.,Sandri,M.,Teren,A。和Gielen,S。(2014)。验证简短的台阶协议,以估计峰值氧更新。欧洲预防性心脏病学杂志,0(00)。•警务学院(2014年)。实施与英格兰和威尔士警察局的与工作相关的健身测试。考文垂:警务学院有限公司。•Gamble,R.P.,Stevens,A.B.,McBrien,H.,Black,A.,Cran,G.W。,&Boreham,C.A.G。(1991)。贝尔法斯特救护车服务的身体健康和职业需求。英国工业医学杂志,48,592-596。•Heyward,V。H.(2006)。高级健身评估和运动处方(第5 EDN)。香槟,伊利诺伊州:人类动力学。
Irena感谢Dolf Gielen,Elizabeth Press,Ahmed Badr,Simon Benmarraze,Herib Blanco,Francisco Boshell,Yong Chen,Barbara Jinks和Binu Parthan(Irena)在准备这项研究的准备中。该报告受益于数量专家的评论和评论,包括Pietro Altematt(Trina Solar),Alain Dollet(CNRS / Promes),Alejandro Labanda(UNEF),Alex Barrows(Exa-Watt),Amelie Ancelle(Estela),Christoph Richter(DLR),Daniel Gudopp(Deea solutions) David Moser(Eurac Research),Eero Vartiainen(Fortum Growth Oy),Elvira Lopez Prados(Acciona),Eric Lantz(NREL),Florian HE(Eth Zurich),Jose Donoso(unef)(UNEF),Jose Luis Martinez Dalmau(Estela),Jourgen(Estela),JürgenDergenderch(Estela)(Estela) (可再生能源研究所),Lena Kitzing(DTU),Manuel Quero(Sunics),Marcel Bial(Estela),Mark Mehos(NREL),Marta Marta Martinez Sanchez(Iberdrola)(Iberdrola),Miguel Miguel Mendez Trigo(Estela),Estela(Estela),Molly Morgan(Exa-Watt),exa-Watt),Nikolai或Nikolai(nikurai)(ethland)(ethland)(ethland)。 (科罗拉多大学博尔德分校),佩德罗·迪亚斯(Solar Heation Europe),菲利普·贝特(Phillip Beiter)(IEA风),西蒙·普莱斯(Simon Price)(Exa-watt)和Rina Bohle Zeller(Vestas)。
当前的全球环境正迫使能源领域发生范式转变,出于环境和经济原因,向更可持续的能源生产结构转型已势在必行( Gao 和 Chen,2023 年)。面对必要的气候变化缓解政策,需要制定合理的能源部门脱碳战略( Hassan 等人,2022 年)。然而,由于潜在成本,严重的担忧仍然存在( Hassan 等人,2022 年)。虽然能源部门的总体投资需求很大,但实现转型所需的额外投资被认为是可持续的( Gielen 等人,2019 年)。可再生能源 (RE) 的可持续发展目标在全球范围内受到强烈影响( Li 等人,2023 年),联合国在 2030 年议程下的承诺就是明证; Colocci 等人(2023 年)。减排目标具有挑战性;例如,欧盟委员会设立了具有法律约束力的目标,到 2030 年将温室气体排放量减少 55%( Pastore 等人,2022 年),到 2050 年实现气候中和。欧盟委员会已在所谓的 2030 年国家能源和气候计划(NECP)中公布了雄心勃勃的可再生能源目标。然而,各国实现脱碳目标的战略存在相当大的内生差异( Maris and Flouros,2021 年)。先前的文献主要关注如何评估政策对国家能源和气候计划的影响,并通过衡量有效性和发展阶段来描述影响,以评估能源政策的影响( Balode 等人,2021 年)。同样,另一项研究旨在分析 NECP 与气候政策的协同程度
