NATURE IN SINGAPORE 17 : e2024122 Date of Publication: 18 December 2024 DOI: 10.26107/NIS-2024-0122 © National University of Singapore Biodiversity Record: Gimlett's reed snakes on Sentosa Island Daryl Tan † , Hamadnurrifat Bin Mohd Azam * , Rachel MY Cheong ‡ & Remy Shek § Email: jktand@gmail.com(†),hamadnurrifat@gmail.com( *通讯作者),rachelcheongmy@gmail.com(‡)remyshek2512@gmail.com(§)推荐引用。tan D,Azam HBM,Cheong Rmy&Shek R(2024)生物多样性记录:Gimlett在Sendosa Island上的Reed Snakes。新加坡的自然,17:e2024122。doi:10.26107/nis-2024-0122受试者:Gimlett的Reed Snake,Calamaria lovii gimletti(reptilia:squamata:squamata:colubridae:colubridae:calamariinae)。识别的主题:Remy Shek和Daryl Tan。位置,日期和时间:Sentosa Island; 2024年3月17日;分别为0135小时和0212小时。栖息地:毗邻次生森林的叶子垃圾。观察员:Daryl Tan,Hamadnurrifat Bin Mohd Azam,Rachel My Cheong和Remy Shek。观察:分别观察到两个活人,每个个体约20厘米。第一个在0135小时中完全暴露在小径中间,越过路径(图1)。它被轻轻翻过,以快速拍摄其下面的照片(图2)。第二个在0212小时发现的叶子中发现了第二个小时(图3)。备注:Gimlett的Reed Snake于1933年首次在新加坡的Pulau Pawai收集(Leong,2004年,calamaria lowi gimletti)。1–3)。引用的文献:Choo LM(2019年)在武吉塔马自然保护区的一条吉姆莱特的芦苇蛇。最近在Bukit Timah自然保护区(Choo,2019年为Calamaria Gimletti),Upper Seletar(Tan&Lee,2021年),步枪范围Link(Serin等人,2017年为Calamaria Gimletti)和Upper Old Thomson Road(Law&Kanaike,Law&Kanaike,2018 Ascalamaria Gimletti)。在新加坡,该物种被认为是濒危和罕见的(Figueroa等,2023年为Calamaria lovii; Thomas等,2024年为Calamaria lovi gimletti)。这很可能是Sentosa的第一张记录,第二个岛屿位置(除Pulau Pawai之外)是该国的物种。应该指出的是,这里的两个人的色彩与新加坡岛的颜色不同。Sentosa标本缺乏黄色斑点,并且腹面的黄色部分仅限于腹侧尺度(见图。居住在新加坡岛上内陆森林中的标本在尾巴的背面有一个黄色的斑点,而腹膜上的黄色延伸到身体的侧面(见Serin等,2017; Law&Kanaike,2018; Chooo,2019; Choo,2019; ys Calamaria gimimletti; Tan&tan&Lee; Tan&Lee,20221)。可能不是同种特定的,但最好通过识别为calamaria lovii和calamaria gimletti的蛇的详细分类学和遗传研究来解决这。新加坡生物多样性记录,2019:74–75。Figueroa A,Low Mey&Lim KKP(2023)新加坡的Herpetofauna:更新和注释的清单,历史,保护和分发。Zootaxa,5287:1-378。Law IS&Kanaike A(2018)Gimlett在新加坡的Reed Snake的第三张记录。新加坡生物多样性记录,2018:142–143。疱疹学评论,35:290。Leong TM(2004)地理分布:Calamaria Lowi Gimletti。 Serin S,Law IS&Thomas N(2017)重新发现了Gimlett在新加坡的Reed Snake。 新加坡生物多样性记录,2017:89–90。 tan R&Lee WWS(2021)生物多样性记录:Gimlett的Reed Snake在Upper Seletar。 新加坡的自然,14:e2021076。 Thomas N,Law IS&Lim KKP(2024)爬行动物物种的清单,其威胁性地位是新加坡的类别。 in:Davison GWH,Gan JWM,Huang D,Hwang WS,Lum Sky&Yeo DCJ(编辑) 新加坡红色数据簿。 新加坡生物多样性的红色列表。 第三版。 国家公园董事会,新加坡,pp。 672–674。Leong TM(2004)地理分布:Calamaria Lowi Gimletti。Serin S,Law IS&Thomas N(2017)重新发现了Gimlett在新加坡的Reed Snake。新加坡生物多样性记录,2017:89–90。tan R&Lee WWS(2021)生物多样性记录:Gimlett的Reed Snake在Upper Seletar。新加坡的自然,14:e2021076。Thomas N,Law IS&Lim KKP(2024)爬行动物物种的清单,其威胁性地位是新加坡的类别。in:Davison GWH,Gan JWM,Huang D,Hwang WS,Lum Sky&Yeo DCJ(编辑)新加坡红色数据簿。新加坡生物多样性的红色列表。第三版。国家公园董事会,新加坡,pp。672–674。
过去 70 年来,研究人员和实验音乐家一直在研究计算机合成音乐,与生成人工智能形成了合作关系,即人机共创。过去几年,音乐艺术家正在迅速采用人工智能工具为人工智能音乐比赛和商业歌曲和专辑制作音乐。为了应对这一趋势,美国版权局发布了最新的政策修订,明确规定了哪些内容有资格获得版权登记。不久之后,合作编目计划 (PCC) 也发布了新指南,为图书馆编目员如何处理人工智能生成的材料提供了建议。在这两种情况下,他们都拒绝将人工智能视为贡献者。然而,这些政策中的语言都是自相矛盾的,表明它们没有能力解决生成人工智能的问题。本研究利用批判性文本分析和定性内容分析,并使用案例来探讨这些政策对生成人工智能的看法。提出了解决 PCC 政策缺陷的建议,并且美德伦理学和结果主义等道德哲学框架支持使用来自权威外部来源的信息补充目录项目记录的论点,为了寻求真相而偏离这一政策。
指标治疗学2020年高级纳米技术2012 Aigecko Technologies 2020生物防治技术2004年蓝ephage* 2016 Braingaze 2013 2013 Colormensing 2018 Colormensing 2018 Colotectes Biotechnologies 2015 DAPCOM 2015 DAPCOM 2015 DAPCOM DAPCOM数据DAPCOM DATA SERVICAT 2019 Nimble Diagnostics 2022 Nostrum Biodiscovery 2015 Oniria Therapeutics 2021 Qilimanjaro Quantum Tech 2019揭示基因组学2021 Smalle Technologies 2012智能课堂项目2023 VIRMEDEX VIRMEDEX虚拟体验2022 Virtual Bodyworks 2015
产品规格 美国国际单位制 机械质量 3.8 lbm 1.72 Kg 输出步长 0.0625 度 空载时的转换率 >9 度/秒 环境温度下 4 度/秒时的输出扭矩 125 in-lb 14 Nm 无动力保持扭矩(最小值) 8 in-lbf 0.90 Nm 扭转刚度 20,000 in-lbf/rad 2,260 Nm/rad 电气 绕组电阻(标称值) 57 Ω 绕组电感(典型值) 30 mH 输入电压范围 24-32 Vdc 位置传感器 电位器 执行器 独立负载额定值(有关组合负载,请咨询 Sierra Space Engineering) 轴向 725 lbs 3.2 kN 径向 725 lbs 3.2 kN 力矩 350 lb-in 39.5 Nm 热工作温度 -22 °F 至 +149 °F -30 °C 至 +65 °C 非工作温度 -40 °F 至 +167 °F -40 °C 至 +75 °C 注意:此数据仅供参考,可能会更改。请联系 Sierra Space 获取设计数据。
摘要:对象识别,本地化和跟踪在计算机视觉应用中起着原始重要性的作用。但是,这仍然是一项极其艰巨的任务,尤其是在需要使用快速移动的无人机需要实时操作的对象的情况下。通常,这些基于视觉的系统的性能受到运动模糊和几何扭曲的影响,仅举两个问题。gimbal系统对于补偿运动模糊并确保视觉流稳定至关重要。在这项工作中,我们使用安装在无人机上的三级式(DOF)gimbal系统研究了主动跟踪方法的优势。提出了一种利用关节运动和视觉信息实时跟踪球形和平面对象的方法。跟踪方法在两个不同的逼真的凉亭仿真环境中进行了测试和评估:3D位置跟踪(球形)的第一个,第二个是6D姿势(平面基准标记)的第二个。我们表明,主动对象跟踪对于无人机应用是有利的,首先是通过减少动作模糊,这是由快速摄像机运动和振动引起的,其次,通过将感兴趣的对象固定在视场的中心内,从而减少了由于外围畸变而引起的重新投射错误。与传统的被动方法相比,结果表明有效的物体估计精度提高了主动方法的精度。更具体地说,一组实验表明,在具有挑战性的运动模式的条件下,在图像失真的情况下,主动的万日跟踪可以提高已知大小移动对象的空间估计精度。
2024 年 1 月 30 日 金博医疗技术深圳有限公司 郭利 总经理 深圳市光明区凤凰街道侨开路 459 号 C5 栋 601 室 518107 中国 回复:K232942 贸易/设备名称:G-Vitri™ 玻璃化冷冻培养基; G-Vitri™ 玻璃化解冻培养基 法规编号:21 CFR§ 884.6180 法规名称:生殖培养基和补充剂 监管类别:II 产品代码:MQL 日期:2023年9月20日 收讫日期:2023年12月27日 亲爱的Leo Guo: 我们已审查了您根据第510(k)节提交的上市前通知,该通知表明您有意销售上述器械,并已确定该器械与1976年5月28日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品药品和化妆品法案》(该法案)的规定重新分类的器械基本等同,且无需获得上市前批准申请(PMA)批准。因此,您可以根据该法案的一般控制规定销售该器械。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。510(k) 上市前通知数据库(网址为 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm)可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实,不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。
创造力是一种涉及围绕任何重要情况或问题的学习构建的行动,是基于神经学的过程。也就是说,大脑决定了这一点。 div>因此,应从活动和大脑过程中采取的护理以鼓励创造性思维。 div>在这种方法的框架内,提出了这项研究,旨在将脑体操描述为增强大学生的创造力的可能性。 div>也对应于书目设计的纪录片研究。 div>最后,可以推断,脑体操是人类形成的强大工具,并且在大学背景下进行了必要的应用,因为它会产生更高水平的关注,理解和推理,学习的条件以及以一种巧妙和创造性的方式生成新情况的适应过程。 div>描述符:创造力;创造性思维;大脑体操;心理体操。 div>(tesauro unesco)。 div>
影响无人机监视系统所捕获图像质量的最关键因素之一是从飞机传递到万向架的振动。无人机中使用的万向架是必不可少的设备,它可以稳定而准确地固定住摄像机并将其指向所需的方向。在本文的范围内,为微型无人机中使用的双轴光电万向架进行了被动隔振系统设计。通过在不同方法中选择弹簧阻尼器系统,使用分析方法进行了在单轴上隔离平台谐波振动的设计。使用分析方法创建了沿单轴隔离平台谐波振动的设计。此外,包含该减震系统的部件“Pan Yoke”采用计算机辅助设计程序进行设计,并使用 Ansys 模态分析检查固有频率值。已确定从飞行器传递到万向架的振动频率和设计部件的固有频率彼此接近,约为 200 Hz。通过各种设计更改和拓扑优化对该部件的固有频率值进行了优化,以防止部件发生共振。
在2022年被任命为终点新闻领先的生物制药研发的前20名女性之一,Gimeno博士于2011年加入了莉莉,并领导了糖尿病,肥胖和心脏代谢疾病的研究和早期临床发展。在她的领导下,礼来(Lilly)在这些领域建立了强大的早期临床管道,并将几个创新的分子推向了第3阶段,并推向了市场,包括基底胰岛素FC(BIF),这是一种新型的每周基底胰岛素(第3阶段); Lyumjev®是一种超级胰岛素lispro的配方:Tirzepatide,一种一流的双GIP和GLP-1受体激动剂(批准用于2型糖尿病,并以Mounjaro®的形式销售;目前在3期临床研究中进行肥胖,心血管疾病,阻塞性睡眠APNEA和心脏失败和心脏失效)。
郭锦彪现为新加坡国防部高级研发顾问。他于 1981 年毕业于新加坡国立大学,获得电气工程学士学位(一级荣誉学位),并于 1986 年在美国海军研究生院获得电气工程理学硕士学位(优异)。在他的职业生涯中,他曾在国防和科技界担任过各种职务,包括国防部研发主任和国防科技局董事会副首席执行官(技术)。他于 2004 年 2 月 1 日至 2016 年 6 月 30 日担任 DSO 首席执行官,并于 2016 年 4 月 1 日至 2021 年 5 月 14 日担任国防部首席国防科学家。他是各种组织、机构的董事会成员和公司董事。他是量子技术中心 (CQT) 理事会主席、空间技术与工业办公室 (OSTIn) 副主席,也是 A*STAR 董事会、SMRT Trains Ltd、D'Crypt Pte Ltd、新加坡科技工程有限公司董事会、新加坡理工学院董事会和新加坡科技设计大学董事会的成员。他还是新加坡工程院院士,以及新加坡国立大学电气与计算机工程系兼职教授。郭先生于 1992 年荣获国防技术奖(个人)。他还于 2007 年荣获公共管理奖章(金奖),并于 2014 年荣获新加坡国立大学杰出工程校友奖。