1) Caforio ALP、Giordani AS、Baritussio A、Marcolongo D、Vicenzetto C、Tarantini G、Napodano M、Toscano G、Gregori D、Brigiari G、Bartolotta P、Carturan E、De Gaspari M、Rizzo S、Basso C、Iliceto S、Marcolongo R. 定制免疫抑制疗法对免疫介导活检证实的心肌炎的长期疗效和安全性:倾向加权研究。欧洲心力衰竭杂志。 2024年5月;26(5):1175-1185。 2)Baritussio A、Cheng CY、Simeti G、Ocagli H、Lorenzoni G、Giordani AS、Basso C、Rizzo S、De Gaspari M、Motta R、De Conti G、Perazzolo Marra M、Tarantini G、Iliceto S、Gregori D、Marcolongo R、Caforio ALP。 CMR 预测心肌炎良好结果的因素:单中心经验。 J Clin Med.2024 年 2 月 21 日;13(5):1229。 3) Vicenzetto C、Giordani AS、Menghi C、Baritussio A、Peloso Cattini MG、Pontara E、Bison E、Rizzo S、De Gaspari M、Basso C、Thiene G、Iliceto S、Marcolongo R、Caforio ALP。免疫系统在心肌炎病理生物学和治疗中的作用:综述。生物医药。 2024年5月23日;12(6):1156。 4)Giordani AS、Baritussio A、Marcolongo R、Caforio ALP。致编辑的信:对“临床怀疑为无法通过机械循环支持脱机的暴发性心肌炎时,心肌活检的诊断产量、安全性和治疗后果”的回应。安重症监护。 2024年1月9日;14(1):5。 5)Baritussio A、Giordani AS、Iliceto S、Marcolongo R、Caforio ALP。短暂性心包缩窄:一种并不太罕见的现象。国际心脏杂志。 2023 年 11 月 1 日;390:131225。 doi: 10.1016/j.ijcard.2023.131225。 6) Grzechocińska J、Tymińska A、Giordani AS、Wysińska J、Ostrowska E、Baritussio A、Caforio ALP、Grabowski M、Marcolongo R、Ozierański K. 经活检证实的病毒阴性自身免疫/免疫介导的心肌炎的免疫抑制治疗 - 重点关注硫唑嘌呤:现有证据回顾和未来观点。生物学(巴塞尔)。 2023 年 2 月 24 日;12(3):356。 doi: 10.3390/biology12030356。 7)Giordani AS、Baritussio A、Vicenzetto C、Peloso-Cattini MG、Pontara E、Bison E、Fraccaro C、Basso C、Iliceto S、Marcolongo R、Caforio ALP。暴发性心肌炎:当一种方法不能适用于所有情况时——对文献的批判性评论。欧洲心脏病学杂志。 2023 年 4 月 20 日;18:e15。 doi: 10.15420/ecr.2022.54。 8) Bruni C、Buch MH、Djokovic A、De Luca G、Dumitru RB、Giollo A、Galetti I、Steelandt A、Bratis K、Suliman YA、Milinkovic I、Baritussio A、Hasan G、Xintarakou A、Isomura Y、Markousis-Mavrogenis G、Mavrogeni S、Gargani L、Caforio AL、Tschöpe C、Ristic A、Plein S、Behr E、Allanore Y、Kuwana M、Denton CP、Furst DE、Khanna D、Krieg T、Marcolongo R、Pepe A、Distler O、Sfikakis P、Seferovic P、Matucci-Cerinic M. 系统性硬化症相关原发性心脏受累评估共识:世界硬皮病基金会/心力衰竭协会关于筛查、诊断和随访评估的指导。 J Scleroderma Relat Disord。 2023年10月;8(3):169-182。 doi: 10.1177/23971983231163413。 Epub 2023 年 4 月 3 日。9) Galli E、Baritussio A、Sitges M、Donnellan E、Jaber WA,Gimelli A. 多模态成像指导心力衰竭患者植入心脏电子设备:总和是否大于各个组成部分?欧洲心脏心血管成像杂志。2023 年 1 月 23 日;24(2):163-176。doi:10.1093/ehjci/jeac237。10) Giordani AS、Candelora A、Fiacca M、Cheng C、Barberio B、Baritussio A、Marcolongo R、Iliceto S、Carturan
Pauline Garcia,William Jarassier,Caroline Brun,Lorenzo Giordani,Fany Agostini等。SETDB1保护鼠肌肉干细胞中的基因组完整性,以允许再生性肌生成和感染。发育细胞,2024,59(17),pp.2375-2392.e8。10.1016/j.devcel.2024.05.012。hal- 04747691
由于地衣对几种环境参数(例如气候因素和空中化学物质)敏感,因此可以将它们作为气候变化和土地利用以及空气污染和其他人类影响的生物鉴定者(Giordani和Brunialti 2015,2015年,Giordani 2019)。历史记录是确定地衣多样性趋势以及解释潜在驱动因素的强制性参考(Nelsen和Lumbsch 2020)。植物标志收集被认为是关于地衣分布的时空数据的基本档案,以及进行操纵和分析研究的物质来源,支持了从当地到全球环境变化的研究(例如Farkas等。 (2022),Wu等。 (2023))。 因此,越来越多地通过多个门户提倡对标本室数据的可访问性。 就意大利而言,由于几种现代意大利地衣植物植物的数据汇总到意大利的意大利信息系统(Martellos等人)(Martellos等),产生了显着的进步 2023)。 该系统目前从13种草药中汇总了88,000多个记录,其中包括herbarium Universitatis tergestinae的数据集(TSB,Conti等人。 2023)和卡拉布里亚大学植物园的植物园(Clu,Conti等人 2024)已经在GBIF中发布。Farkas等。(2022),Wu等。(2023))。因此,越来越多地通过多个门户提倡对标本室数据的可访问性。就意大利而言,由于几种现代意大利地衣植物植物的数据汇总到意大利的意大利信息系统(Martellos等人)(Martellos等2023)。该系统目前从13种草药中汇总了88,000多个记录,其中包括herbarium Universitatis tergestinae的数据集(TSB,Conti等人。2023)和卡拉布里亚大学植物园的植物园(Clu,Conti等人2024)已经在GBIF中发布。
8. Jeremiah Giordani*、Ziyang Xu*、Ella Colby、August Ning、Bhargav Reddy Godala、Ishita Chaturvedi、Shaowei Zhu、Yebin Chon、Greg Chan、Zujun Tan、Galen Collier、Jonathan D. Halverson、Enrico Armenio Deiana、Jasper Liang、Federico Sossai、Yian Su、Atmn Patel、Bangyen Pham、Nathan Greiner、Simone Campanoni 和 David I. August。“重新审视研究计算:实践和趋势”。在:2024 SC24:高性能计算、网络、存储和分析 SC 国际会议。美国加利福尼亚州洛斯阿拉米托斯:IEEE 计算机协会,2024 年 11 月,第 1097-1110 页。doi:10.1109/SC41406.2024.00076
议程 • 欢迎 • GC 的开幕词 • 围绕社区领袖 2 分钟演练 • 高级指挥官批准的 CLIF 主题领域:- MWR 活动、ACS 和 ITR 休闲旅行 - Chris Remillard - CYS 计划,包括青少年中心 - Erin Faherty - USMA 和 USMAPS R 日和影响 - MAJ Evgueni Goussev - 社区健康 (KACH) 每月重复 - COL Brianna Perata - 住房 (BBC) 每月重复 - Brian Beauregard - 社区活动日历 (DPTMS) 每月重复 - Charly Peddy • 驻军指挥官问答 • 其他 2 分钟主题:- 炎热天气安全简报 - Rafael Giordani - 西点军校 Audie Murphy 俱乐部 - MSG Justin McBride • 小组问答 • 高级领导结束语
简介 蜜蜂群落可以充当有害物质的探测器,通过高死亡率发出有毒分子存在的信号,或者在花粉、花蜜或幼虫中积累非急性致命物质(如重金属、杀菌剂和除草剂)的残留物(Celli,1983 年;Porrini 等人,2002 年)。它们于 1935 年首次被用作监测环境质量的生物指标(Crane,1984 年)。农药使用检测是蜜蜂监测应用的研究领域之一(Atkins 等人,1981 年;Celli,1983 年;Mayer 和 Lunden,1986 年;Mayer 等人,1987 年;Celli 等人,1988 年;Celli 和 Porrini,1991 年;Celli 等人,1991 年;Porrini 等人,1996 年)。由于蜂群中约四分之一的居民是活跃的觅食者,因此蜂群的状况反映了其栖息地的状态。使蜂群成为特别合适的环境指标的必要条件包括:养蜂人可以轻松饲养蜂群,觅食者可以覆盖大片区域,并且出于自身利益而收集花粉或花蜜等样本。(Celli 和 Maccagnani,2003 年)。蜜蜂群的发展取决于许多因素,包括但不限于蜂王年龄、营养、蜂群强度、病原体和寄生虫以及区域特性。因此,需要大量样本才能客观地了解蜜蜂危害的因果关系。在旨在了解蜜蜂群落崩溃原因的德国蜜蜂项目中,2004 年至 2009 年间,在全国 125 个地方监测了 1,200 多个蜂巢。这项研究揭示了许多相关性,但也留下了一些问题。作者推测,适合记录亚致死或慢性影响的研究设计可能会揭示出杀虫剂对蜂群崩溃的负面影响,而他们无法检测到这种负面影响。(Genersch 等人,2010 年)。因为使用蜜蜂作为生物指标的大规模研究非常耗时耗力,所以它们的数量仍然很少。1978 年,Giordani 等人证明了氯化烃杀虫剂硫丹的剧毒作用。然而,需要很多年的时间和几项研究才能提供足够的证据来改变对该物质的使用限制。后来,在意大利北部的一个大规模监测项目中,记录了数百个蜂巢在农业产生的高和低化学压力下的蜜蜂死亡率。通过分析伤亡人数特别多的蜂巢中的死蜂,能够确定造成 76% 已记录的大规模死亡的分子。然而,作者提到的设计的一个缺点是,收集到的死蜂数量只是一个保守估计,因为无法记录现场致死剂量造成的损失。(Celli 和 Maccagnani,2003 年)。这些研究展示了蜜蜂监测在各个领域的潜力,从农药监管到蜜蜂健康研究的普遍进展。然而,它们是先驱项目,并不代表通常的研究方式。到目前为止,因子分析和预防活动主要建立在少数蜂巢的快照数据上,这些数据可以更经济地收集。技术的使用可以帮助降低劳动强度,从而降低此类项目的成本。最近开发了一些基于不同技术的系统,但仍然存在缺陷。有些计数系统试图量化入口处的进出蜜蜂,例如带电容检测的 BeeCheck(Gombert 等人,2019 年)。由于它们的设计,计数系统只能记录短距离内的传粉者。它们的感官原始数据的信息内容大大减少,无法用成像方法进行评估。在复杂的情况下,例如蜜蜂相互踩踏或形成群体,它们很容易出现测量不准确,因此不适合对死亡率进行可靠的评估。借助视觉系统,可以通过一系列图像跟踪每只动物。第一批科学研究已经可以展示原型系统,该系统使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来确定全球蜜蜂种群的变化。该项目使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来识别全球蜜蜂种群的变化。该项目使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来识别全球蜜蜂种群的变化。