机器学习算法在依靠时间序列数据(例如能量预测,环境监控和电信等时间序列数据)方面表现出显着的成功。随着时间序列数据的越来越多的流行率,有一个越来越多的授权可以用于预测任务的准确和广义模型。培训这种模型是一个高度迭代的过程,需要对时间序列数据和机器学习算法有深刻的了解。我们演示了Gizaml,这是一种基于元学习的框架,专门针对自动化算法选择和用于预测时间序列的超参数调整。gizaml主要包括两个关键阶段:数据和特征工程阶段,以及建议和优化阶段。在数据和功能工程阶段中,GizAML对数据集进行重新启动,以获取均匀的时间间隔,处理离群值并自动提取各种与时间序列相关的功能。在推荐和优化阶段,Gizaml采用了一种元模型,该元模型提出了机器学习管道配置的实例化,这些配置预计将在新型数据集中表现出很强的表现。这些配置温暖启动了采用有效的贝叶斯选择方法的优化阶段。元模型采用大型语言模型(LLM),用于生成数据集表示的嵌入代表向量。Gizaml使用9种不同的回归机学习算法和每种不同的超参数配置。此外,Gizaml利用新的运行来不断提高对未来时间序列预测任务的元模型建议的性能和鲁棒性。我们的演示方案表明,Gizaml的表现优于当前最新的开源自动化机器学习框架。