我们研究了美国公司使用人工智能技术后劳动力构成和组织的变化。为此,我们利用员工简历和招聘信息数据集的独特组合来衡量公司层面的人工智能投资和劳动力构成变量,例如教育程度、专业化和层级。我们记录了受过高等教育的员工和 STEM 员工初始份额较高的公司在人工智能方面的投资更多。随着公司对人工智能的投资,它们倾向于转向受过更多教育的劳动力,拥有本科和研究生学位的员工比例更高,并且在 STEM 领域和 IT 技能方面的专业化程度更高。此外,人工智能投资与公司层级结构的扁平化有关,初级员工的比例显着增加,中层管理和高级职位员工的比例下降。总体而言,我们的研究结果表明,采用人工智能技术与企业劳动力的重大重组有关。
摘要:本文探讨了碲化物玻璃中的 MoO 3 和 SiO 添加剂对在辐射背景或宇宙辐射增加的条件下工作的电子微电路的屏蔽特性和保护的影响。之所以选择 MoO 3 和 SiO 掺杂剂,是因为它们的特性(包括绝缘特性)可以避免辐射损伤引起的击穿过程。这项研究的意义在于提出使用防护玻璃保护电子电路中最重要的组件免受电离辐射负面影响的方法,电离辐射可能会导致故障或导致电子设备不稳定。使用标准方法评估伽马和电子辐射的屏蔽效率,以确定放置在屏蔽后面并受到不同剂量辐照的微电路的阈值电压(∆U)值的变化。结果表明,玻璃结构中 MoO 3 和 SiO 含量的增加可使伽马辐射屏蔽效率提高高达 90%,同时在长时间暴露于电离辐射的情况下仍能保持微电路性能的稳定性。根据所得结果,我们可以得出结论:使用基于 TeO 2 –WO 3 –Bi 2 O 3 –MoO 3 –SiO 的防护玻璃非常有希望为在背景辐射或宇宙辐射增加的条件下工作的微电路和半导体器件的主要部件提供局部保护。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,它允许在较小的载流子密度下有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上要实现有前景的可扩展外延石墨烯,需要分子掺杂来补偿来自 SiC 基底的电子转移,而分子掺杂在环境条件下通常不稳定。在这里,我们采用有机电子器件中常见的经典玻璃封装来钝化分子掺杂外延石墨烯以抵抗空气中的水和氧分子。我们研究了玻璃封装设备中霍尔量子化的稳定性,为期近 1 年。在近 1 年的多次热循环中,霍尔量子化保持在阈值磁场之上,在 2 n ΩΩ − 1 以内,小于 3.5 n ΩΩ − 1 的测量不确定度,而普通的未封装设备在空气中放置 1 个月后明显显示出与标称量化霍尔电阻的相对偏差大于 0.05%。
摘要 较大的朗道能级间距源于石墨烯中准粒子的线性能量动量色散,这使得在较小的电荷载流子密度下可以有效实现量子霍尔效应。然而,在碳化硅 (SiC) 上具有发展前景的可扩展外延石墨烯需要分子掺杂,而分子掺杂在环境条件下通常是不稳定的,以补偿来自 SiC 衬底的电子转移。在这里,我们采用了有机电子器件中常见的经典玻璃封装,以使分子掺杂的外延石墨烯对空气中的水和氧分子钝化。我们已经研究了玻璃封装设备中霍尔量子化的稳定性近 1 年。经过近一年的多次热循环,霍尔量子化保持在阈值磁场之上,小于 3.5 n Ω Ω − 1 的测量不确定度,而普通未封装的器件在空气中放置 1 个月后明显显示出与标称量子化霍尔电阻的相对偏差大于 0.05%。
1。总结性研究报告 - PHS-15-HPK02:一项用于IFU验证的模拟研究BD Hypak TM堆叠针和BD Hypak TM PRTC在医疗保健工作者中(HCWS)和自我注射患者人群2。视觉/化妆品控制,客户质量规范,SC000110 3。bd hypak tm用于疫苗针头设计验证理由[内部研究]。pont-de-claix,FR:Becton,Dickinson and Company; 2013 4。BD销售分析[内部分析]。pont-de-claix,FR:Becton,Dickinson and Company; 2019 5。2014年至2018年的疫苗市场分析和产品销售[内部分析]。Pont de Claix,FR:Becton,Dickinson and Company; 2019 6。疫苗市场领导者,https://www.statista.com/statistics/314562/leading-gleading-global-pharmaceuticalcompanies-by-vaccine-revenue/ 2018年4月4日访问7。BD-PS external communication to customers - BD to Invest $1.2 Billion in Pre-Fillable Syringe Manufacturing Capacity Over Next Four Years https://news.bd.com/2020-12-02-BD-to-Invest-1-2-Billion-in-Pre-Fillable-Syringe-Manufacturing-Capacity-Over-Next-Four-Years/Accessed Dec. 2, 2020
在现代化石燃料燃烧炉中,炉外废气中的热量用于预热燃烧空气,以产生更高的火焰温度并提高效率。最常用的空气预热系统是蓄热系统。