玻璃中飞秒(FS)激光诱导的修饰的种类铺平了通过激光脉冲能的非线性吸收引发的多种结构变化的道路。光眼镜中这些修饰的性质根据激光写参数而变化,并且在文献中将其分为三种主要类型[1]。I型修饰可以观察到较低能量处的折射率的平滑和均匀变化。早期研究表明,FS激光器在硅玻璃中诱导3D折射率分析的潜力,这是创建波导的基础步骤[2]。II型修饰是通过折射率的各向异性变化来区分的。在特定的脉冲持续时间,频率和能量条件下,出现了强烈的双折射,它起源于垂直于激光极化的定期层状纳米结构[3]。在较高的激光强度下,发生了III型修饰,这是由于局部微探索而形成的纳米/微粒子具有致密壳的形成。是II型修饰,与纳米的形成有关。fs激光诱导的纳米射流在几个技术域中发现了广泛的应用。它们在创建长期光学数据存储设备[4,5],热光传感器[6,7]和微流体[8,9]中起着核心作用。重要的是,它们还用于制造各种光学元件,包括波导,光层转化器[10,11]和其他双重元素[12]。尽管其应用的范围很广,但对玻璃中纳米形成背后的机制的全面理解仍有待实现。这是至关重要的,因为它会影响他们的制造,因此在各种技术环境中优化了它们的使用。纳米形成过程的中心是多光子电离的现象,其中光子吸收促进了从入射光到实心玻璃结构的能量转移[13]。由于激光强度超过特定的阈值,它会导致血浆的产生,其特征是高密度自由电子云[14]。入射激光与不均匀性的散射光之间的干扰
科学技术研究职业的独特机会 CSIR-CGCRI 是 CSIR 最古老的研发 (R&D) 实验室之一,CSIR 是印度政府科技部科学与工业研究部 (DSIR) 下属的一个自治机构。CSIR- CGCRI 致力于在先进陶瓷和特种玻璃(包括光纤/基于光纤的设备)领域取得科学领导地位。该研究所的主要研究活动涉及:特种玻璃、特种光纤、玻璃和陶瓷的溶胶-凝胶处理、纳米结构玻璃和陶瓷、工程陶瓷(氧化物和非氧化物)、生物医学应用陶瓷、陶瓷膜、先进耐火材料、陶瓷传感器、氧化物燃料电池和电池组、传统陶瓷(白色陶器和红陶)等。大多数研究项目由政府机构、战略部门和私营企业资助。
随着制造过程的发展,观察到金属纤维复合材料在机械工程中的重要性的提高。这些是由适当排列的金属层和各种纤维组成的材料。在机器和设备组件的构建中,复合材料的广泛使用意味着它们通常会在可变的温度条件下使用。本文的目的是对典型复合材料的热膨胀分析:碳纤维增强聚合物,玻璃纤维增强聚合物,玻璃增强铝层压板和碳纤维钢筋均匀的碳纤维增强铝层。EN AW-6060铝合金用作参考材料。扩张测试的目的是确定热膨胀系数和在高达100°C的高温下复合材料的尺寸稳定性。EN AW-6060铝合金的特征是最高的line ear膨胀系数(20.27×10 -6 1/K)。含有玻璃纤维的复合材料的特征是最低的正线性热膨胀系数。在经过测试的复合材料中,CARALLS列出了最低的热膨胀系数。关键字:热膨胀系数,复合材料,扩张分析,温度,热范围
玻璃纤维增强复合材料 (GFRC) 在现代生活中无处不在。在任何时候,人们可能都站在 GFRC 组件 20 英尺范围内,无论是汽车、船、风力涡轮机还是住宅复合甲板。尽管它们无处不在,但目前处理使用寿命结束时的 GFRC 的方法并不理想。这些复合材料通常最终进入垃圾填埋场,占用大量空间并浪费了在新产品中重复使用这些材料的潜力。近年来,由于社交媒体平台的发展,人们对这一问题的关注度显著提高。风力涡轮机叶片在垃圾填埋场中广为流传的照片是可再生能源产生的罕见垃圾的缩影,也是试图为实际问题寻找真正解决方案的行业的挫折和创新的缩影。如果我们希望继续使用 GFRC,短期内需要采取权宜之计,例如将复合材料倾倒在垃圾填埋场或将废物用作水泥窑的替代燃料。但从长远来看,这些选择并不能为报废复合材料提供生态甚至人道主义负责的解决方案。2019 年,美国能源部向 Carbon Rivers(田纳西州诺克斯维尔)提供了一项小企业创新研究补助金 (SBIR),以探索复合材料循环经济的解决方案,主要关注风力涡轮机叶片。该公司成立于 2017 年,旨在利用
摘要 DNA 结合蛋白 (DBP) 在生物学和生物技术中发挥着关键作用,人们对设计具有新功能或改变特异性的 DBP 产生了浓厚的兴趣。虽然使用选择方法重新编程和天然 DBP 的特异性已经取得了成功,但与 DNA 结合的新 DBP 的计算设计仍然是一项突出的挑战。解决这一挑战将为可编程识别和操纵 DNA 序列和结构带来新的解决方案;并最终为合成基因调控、DNA 修饰酶和许多其他应用提供新的可能性。在本次演讲中,我将描述一种计算方法的开发和实验验证,该方法用于设计通过与大沟中的碱基相互作用来识别特定目标序列的小 DBP。然后,我将描述深度学习支持的定制 DNA 结合蛋白设计的通用框架的进展。最后,我将总结我对这个新框架未来前景的看法。
记录方:Brian O. Lipman 律师,新泽西州费率顾问部主任 Peter DeFazio,Miller Bros. 董事会:1 本命令涉及 Summit City Solar, LLC(“Miller Bros.”或“申请人”)根据 N.J.S.A. 编纂的 L. 2012,c. 24(“太阳能法案”)提出的认证申请。48:3-87(t) [“Subsection (t)”]。Summit City Solar 寻求获得认证,以获得生成过渡可再生能源证书(“TREC”)的资格,该证书适用于拟议的太阳能发电设施,该设施位于 Glassboro Boro 卫生垃圾填埋场(“SLF”)场地约 14 英亩的土地上,即第 335 街区,地块 1;第 356 街区,地块 1;第 357 街区,地块 1;以及新泽西州格洛斯特县格拉斯伯勒自治市利哈伊路南与德普特福德路交叉口的 358 街区 1 号地块(“项目”)。申请人声称,拟议地点位于“适当封闭的卫生垃圾填埋场”,该术语在《太阳能法案》中定义。背景 2012 年 7 月 23 日,《太阳能法案》签署成为法律。《太阳能法案》修订了管理可再生能源发电、互连和融资的法规的某些方面。除其他行动外,《太阳能法案》要求新泽西州公用事业委员会(“委员会”)开展程序以建立新标准并制定新计划以实施法规的指令。
集中精力于路况,同时接收所需信息,而不会分心失焦。 在高达 25° 的视野和 10 米的图像距离内,他们可以获得想要或需要的选定信息。 这带来了显著的安全优势,尤其是与不断扩大的显示器相比,因为后者存在分散驾驶员注意力的风险,图 3。与使用传统镜子和镜头的传统 HUD 方法相比,蔡司微光学技术可将体积显著减少 50% 以上,并实现最大的设计灵活性,同时提供前所未有的图像质量。 这使得几乎任何汽车都可以实现这种舒适性和安全性。 即使没有增强现实显示器,投影技术也提供了决定性的安全优势。 集成的、透明的功能层将空间需求减少到 1 升以下。 借助透明的平面显示器,可以在挡风玻璃的任何部分显示所有关键信息。这使得全新的车辆驾驶舱设计成为可能。其他优点包括功能简单和舒适度更高:例如,娱乐内容可以投射到前排乘客的视野中。具有显示功能的透明层也适用于侧窗和后窗。
玻璃之间的这种二分法是无限可回收,可回收较差的玻璃与可再生能源的关键,并以较大的碳成本制造,这说明了难以实现这种材料的净零零和可持续的未来。由于这些复杂性,比以往任何时候都重要的是,可持续的方法是通过科学家,工程师和企业的十字路口创造的,因为如果过程在财务上不可行,则该过程不是真正可持续的。回收:大多数制造的玻璃是苏打石灰硅酸盐,出于合理的原因。SLS一直是许多产品的基础,因为成分无处不在,便宜且融化相对较好。这些属性的组合使SLS几乎不可能取代和从制造商的角度替代。但是,只要回收利用效率低下,寿命终止SLS的盈余就会继续是一个问题。要解决这个问题,我们必须转向回收和再利用的新方法。典型的玻璃流量分解如下:
计划委员会:罗斯 - 霍尔曼理工学院(美国)霍斯辛·阿利萨法伊(Hossein Alisafaee); John P. Deegan,Rochester Precision Optics,LLC(美国);里克·菲茨帕特里克(Rick Fitzpatrick),挤满了有限责任公司(美国); Marcel Friedrichs,Fraunhofer-InstitutfürProduktionStechnologieIPT(德国); Ulf Geyer,Auer Lighting GmbH(德国); Panasonic生产工程有限公司Koji Handa(美国); Sai K. Kode,Micro-Lam,Inc。(美国); Oscar M. Lechuga,Fresnel Technologies Inc.(美国); Chris Morgan,Moore Nanotechnology Systems,LLC(美国); Panasonic生产工程有限公司Tomofumi Morishita(日本); J. David Musgraves,Musgraves Consulting(美国);吉姆·奥尔森(Jim Olson),Syntec Optics(美国);迈克尔·舒布(Michael P. Schaub),元(美国); Ulrike Schulz,Fraunhofer-InstitutfürAngewandteoptik und feinmechanik iof(德国);汉密尔顿·谢泼德三世(Hamilton Shepard III),Waymo,LLC(美国); Jan-Helge Staasmeyer,Leica Camera AG(德国)