抽象一些重金属,例如PB,CD,HG以及对人类极为危害的,因为它们的非生物性性质即使在非常低的暴露水平下也是如此。除了标准方法(例如电感耦合等离子体(ICP) - 质谱和ICP光学发射光谱法)外,还需要开发具有快速,准确和廉价要求的其他方法,以检测这些在水源中的有毒重金属离子。最近,由于高选择性,敏感性和低成本,多孔材料在阳极剥离伏安法中的应用引起了极大的关注。在本研究中,使用Zno-电化学降低的氧化石墨烯(ZnO/Ergo)修饰的玻璃碳电极(GCE)用于PD(II)和CD(II)的电化学检测。发现ZnO/ERGO-GCE的表面积为0.130 cm 2比裸机GCE的表面积(0.083 cm 2)大得多。对于ZnO/ergo-gce而言,电荷转移电阻从裸机GCE的3212Ω显着降低到924Ω。这些结果表现出ZnO/ Ergo修饰电极动力学的快速电子传递比。ZnO/ergo-gce与ERGO-GCE和Bare GCE相比,在检测Pb(II)和CD(II)方面表现出出色的电化学性能。峰值电流与2.5-200 µm范围内的CD(II)和Pb(II)浓度具有线性关系。CD(II)和Pb(II)的检测极限分别为1.69和0.45 ppb。此外,电化学传感器在实验研究中表现出极好的选择性,稳定性和可重复性,并且为检测痕量金属的巨大潜力开辟了巨大的潜力。
对现有科学文献的比较分析表明,基于陶瓷(Al 2 O 3 、TiO 2 、SiO 2 )及其主轴连接制成的传感器既有优点,也有缺点。采用特殊工艺方法制造的SiO2多孔材料成本高,对SO 2 、CO 2 、CO、NH 3 、CH 4 等有毒气体的灵敏度低,等效逆反应时间<10秒[1]。研究表明,由薄非晶态片状硫属玻璃(As 2 (Se 0.9 Te 0.1 ) 3 、As 2 Se 3 )制成的传感器的灵敏度取决于它们的成分,其惰性极低。主要原因是作为电子过程的体电导率变化发生得相当快[2]。另一方面,硫属化物玻璃传感器(As 4 S 3 和 As-Ge-Te)体积小、成本低、能耗低,灵敏度高 [3]。基于硫属化物 As 4 S 3 和 As-Ge-Te 玻璃薄层的电阻式传感器对丙胺 (C 3 H 7 NH 2 ) 和二氧化氮 (NO 2 ) 介质高度敏感,可成功用于监测这些介质,因为它们具有对湿度的动态响应、高恢复性和可逆性的特点 [3]。硫化物硫系玻璃(例如As-S)的波长主要在0.6~7微米范围内,而含锗(Ge)、硒(Se)、硫(S)和碲(Te)的硫系玻璃(Ge-S、Ge-Se、Ge-As-S、Ge-As-Se、Ge-As-Se)的波长更宽,光学透明度高(2~12微米),可以在相对较宽的温度范围内(200~300℃)作为更有效的光纤材料应用[4.5]。
摘要:氘化,硫化,无质子的玻璃状聚合物的合成为红外光学(IR)光学元件提供了一种途径,特别是用于MEDWAVE IR(MWIR)光子设备的途径。已利用一个疗法的聚合物来增强中子横截面与蛋白质聚合物的形态中子散射测量,但发现其他应用的实用性有限。我们报告了perd化的d 14-(1,3-二异丙苯基苯)的合成,其剥离水平以上超过99%,并且制备无质子的,无质子的,perdyuterated perdyerated poly- dyr-d-d-d 14-(1,3-二异丙苯基苯二异丙苯基苯二异丙苯基)(元素)(通过sulfcun)(sulfcan)。这些反应的详细结构分析和量子计算计算显示出显着的动力学同位素效应,这改变了机械途径,以形成deutero vs proteo poly(s -r -DIB)的不同共聚物微结构。此设计还可以通过将C -H键振动转移到3.3μm/3000 cm -1的3.3μm/3000 cm -1中,从而可以对MWIR透明度进行分子工程,从而在Proteo Poly(S- R -DIB)中观察到4.2μm/2200 cm -1。此外,还展示了薄膜MWIR光学光栅的制造,这些光栅由脱硫硫化的,无质子的Poly(S- r-d-d 14-dib)制成;这些光栅在3.39μm处的操作成功实现了,而proteo poly(s -r -Dib)光栅在这些波长下是不透明的,突出了这些材料中MWIR传感器和紧凑光谱仪的承诺。■简介
这项工作探讨了用于光学传感和光子技术的发光玻璃材料和复合材料的设计,合成和应用。该研究的重点是使用适合纤维图的氧化物玻璃基质(例如校尿石和磷酸盐玻璃)来开发新型的光学活性材料,这些玻璃是经过修改以改善其光学和热性能的。引入网络修饰符,尤其是氟化物,导致具有透明度和适当化学稳定性的玻璃系统。这些矩阵用稀土离子(RE 3+)和纳米颗粒掺杂,它们还用作发光配位聚合物(LN-CP)生长的底物,从而使新玻璃@LN-CP复合材料产生具有化学传感潜力的重要潜力。采用系统方法来使用诸如X射线衍射(XRD),拉曼光谱,固态核磁共振(NMR)和吸收光谱的技术来表征这些玻璃基质,从而提供了对其结构,光学,光学和热特性的见解。与RE 3+共掺杂的光学活性磷酸盐玻璃的合成证明了促进上转换(UC)发光的能力,突出了它们的光子应用潜力。这项研究还强调了玻璃@LN-CP复合材料的发展,该复合材料通过玻璃基板和光纤上的原位生长合成。这些复合材料对丙酮和2-戊酮等羰基化合物表现出强烈的发光响应,证明了它们的化学传感潜力。此外,涂层的光纤可以在长距离内传输发光信号,从而促进了分析物的实时和远程检测。因此,本文有助于开发新的发光材料和基于光纤的传感器,为创新的光学传感器和光子设备提供了多功能平台。
摘要:对实现更可持续制造和循环经济模型的高性能生物材料的需求正在显着增长。卡夫木质素(KL)是一种丰富且功能高的芳香/酚类生物聚合物,是纸浆和造纸工业的主要侧产品,以及最近的第二代生物填充物。在这项研究中,将KL纳入了基于双苯酚A(DGEBA)的二甘油乙醚(DGEBA)和胺固化剂(Jeffamine D-230)的玻璃状环氧系统中,该系统被用作固化剂的部分替换和DGEBA前固化剂和DGEBA前添加剂或反应性添加剂。A 由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。 此外,还研究了KL粒径的效果。 球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。 显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。 最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。 GKL复合材料表现出改善的热机械性能和透明度。由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。此外,还研究了KL粒径的效果。球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。GKL复合材料表现出改善的热机械性能和透明度。使用NMR,TGA,GPC和DLS技术对所有木质素进行了广泛的表征,以相关并证明环氧聚合物表征的结果。
国际期刊:1. A. Sahu、RS Maurya、LK Singh、T. Laha,分析铣削和烧结参数对 Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 非晶带晶相演变和力学性能的影响,https://doi.org/10.1007/s40195-021-01341-y。2. A. Sahu、RS Maurya、S. Dinda、T. Laha,Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 放电等离子烧结块体非晶复合材料的相演变相关纳米力学性能,冶金和材料学报 A 51A (2020) 5110-5119。 3. RS Maurya、A. Sahu、T. Laha,通过机械合金化和放电等离子烧结合成的 Al 86 Ni 8 Y 6 非玻璃合金的纳米压痕研究,国际材料研究杂志 111 (2020) 1-8。4. A. Sahu、RS Maurya、T. Laha,通过放电等离子烧结固结的 Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 熔纺薄带、研磨薄带颗粒和块体样品的非等温结晶行为,ThermochimicaActa 684 (2020) 1-11。 5. A. Sahu 、RS Maurya、T. Laha,Al 86 Ni 6 Y 4.5 Co 2 La 1.5 机械合金化非晶粉末与熔体快速淬薄带烧结行为的比较研究,先进粉末技术 30 (2019) 691-699。6. A. Sahu 、RS Maurya、T. Laha,烧结温度对机械合金化和放电等离子烧结制备的 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 块体非晶复合材料相演变的影响,自然科学进展:材料国际 29 (2019) 32-40。 7. T. Thomas, C. Zhang, A. Sahu , P. Nautiyal, A. Loganathana, T. Laha, B. Boesl, A. Agarwal, 石墨烯增强对放电等离子烧结制备的 Ti 2 AlC 陶瓷力学性能的影响, 材料科学与工程 A 728 (2018) 45-53。8. A. Loganathan, A. Sahu , C. Rudolf, C. Zhang, S. Rengifo, T. Laha, B. Boesla, A. Agarwal, 冷喷涂 Ti 2 AlC MAX 相涂层的多尺度摩擦学和纳米力学行为, 表面与涂层技术 334 (2018) 384-393。 9. RS Maurya, A. Sahu , T. Laha, 烧结温度对机械合金化 Al 86 Ni 6 Y 6 Co 2 非晶态粉末放电等离子烧结固结过程中相变的影响, 非晶态固体杂志 453 (2016) 1-7。10. RS Maurya, A. Sahu , T. Laha, 机械合金化和连续放电等离子烧结在不同固结压力下合成的铝基块体金属玻璃的微观结构和相分析, 先进材料快报 7 (2016) 187-191。11. RS Maurya, A. Sahu , T. Laha, 通过放电等离子烧结固结机械合金化非晶态粉末合成的 Al 86 Ni 8 Y 6 块体非晶态合金的定量相分析, 材料与设计 93 (2016) 96-103。 12. RS Maurya,A. Sahu,T. Laha,固结压力对机械合金化 Al 86 Ni 8 Y 6 非晶态粉末放电等离子烧结过程中相演变的影响,材料科学与工程 A 649 (2016) 48-56。国际会议:1. A. Sahu,A. Behera,Al-Cu 合金的半固态加工和摩擦学特性,Materials Today:Proceedings 2 (2015) 1175-1182。2. A. Behera、S. Aich、a. Behera、A. Sahu,磁控溅射 Ni/Ti 薄膜的加工和特性及其退火行为以诱导形状记忆效应,Materials today:proceedings 2 (2015) 1183-1192。
摘要这项研究是关于非酸性培养基中氨基唑的电化学聚合。尽管它在文献中非常普遍,但研究的数量与聚碳唑相关的电致色素特性受到限制。在文献中,聚合培养基有三种不同的类别(非酸性,酸性和离子液体)。基本上,大多数科学家都试图在非酸性介质中进行实验,因为在该培养基的键入中,通过衍生结构获得的新结构是聚合的。但是,有时单体的聚合变得困难,或者所得聚合物不会表现出电化学和光学稳定性。在这种情况下,首选具有酸性或离子液体的中型溶液。尽管在离子液体和酸性培养基中获得的聚合物在电化学上稳定,并且完全粘附在电极表面上,但很明显,这些溶液也具有一些缺点,例如离子液体的高成本,并且在酸性培养基中获得的聚合物可能含有酸性培养基在Promigation的污染物上含有污染物颗粒。在这项研究中,通过在非酸性培养基中的电极表面上的聚合物来研究所获得的聚合物的电化学和光学特性。为此,在0.1 m tetrabutylymonium Hexafluorophate /二氯甲烷(TBAPF 6 / DCM)中,使用培养基碳和氧化锡(ITO)玻璃电极都涂在玻璃状碳和二硫锡(ITO)玻璃电极上。聚合物膜合成的显示出可逆的电化学氧化过程特性以及电致色素特性。 在不同的应用电势下实现了聚合物膜的不同颜色。 在中性状态下,聚碳唑在-0.3 V处表现出透明的颜色。氧化后,其颜色分别在0.3 V和1.3 V时变成绿色和蓝色绿色。 在390 nm时发现了紫外线的最大差异 - 在800 nm光学对比度时(对于第一个周期),膜的吸收约为22%。 考虑到这项研究将构成其他研究的基础,因此人们认为,从甲状化的含量特性方面,对氨基巴唑聚合物的评估将为文献提供很大的作用。显示出可逆的电化学氧化过程特性以及电致色素特性。在不同的应用电势下实现了聚合物膜的不同颜色。在中性状态下,聚碳唑在-0.3 V处表现出透明的颜色。氧化后,其颜色分别在0.3 V和1.3 V时变成绿色和蓝色绿色。在390 nm时发现了紫外线的最大差异 - 在800 nm光学对比度时(对于第一个周期),膜的吸收约为22%。考虑到这项研究将构成其他研究的基础,因此人们认为,从甲状化的含量特性方面,对氨基巴唑聚合物的评估将为文献提供很大的作用。
所有可获得的商业可用试剂和溶剂均按收到。根据文献方法1的修改,制备了吡啶基DPP材料,如下所述。使用Sigma-Aldrich Silica凝胶(孔径为60Å,粒径40-63μm)进行色谱净化,并在E.Merck Silica凝胶板上进行,使用UV光(365 Nm)进行辐照。NMR光谱,除非另有说明,否则在室温下记录了NMR DPX300光谱仪,除非另有说明。使用溶剂残留信号作为内标,以每百万(PPM)为单位报告所有化学位移,赫兹(Hz)报告了耦合恒定值(J)。以下缩写用于信号多重性:s,singlet; D,Doublet; t,三重态; m,多重;和B,广泛。红外光谱记录在装有派克gladiatr附件的Bruker Tensor 27仪器上,并带有钻石晶体。在Stuart SMP20熔点设备上确定熔点。循环伏安学研究,在某些情况下是EMSTAT3 potentiostat。使用单个隔室细胞中的三电极布置在氮气中进行标准环状伏安法。氧化还原电势与二苯甲酸二夫妇相比,用作内部参考。dmf被用作溶剂。六氟二氟磷酸二氟丁基铵被用作所有电化学实验的支持电解质。使用含有电解质溶液的桥梁,在使用Autolab PGSTAT20 20 potentiostat时,使用了玻璃碳工作电极,PT纤维工作电极,PT碳工作电极,PT碳的工作电极,PT碳的工作电极,PT碳的工作电极,PT碳的工作电极,PT碳的工作电极,通过含有电解质溶液的桥管从测试溶液中进行化学分离的。
抽象目标:在一种新方法中,通过溶剂热方法合成铜(II)氧化物(CUO)纳米结构,用于应用于检测葡萄糖的生物传感器。测定葡萄糖对于控制糖尿病很重要。非酶检测葡萄糖是可取的,因为其成本低。否则,CUO可以在葡萄糖对葡萄糖的氧化中发挥作用,这在葡萄糖检测中很重要。因此,从CUO获得新的形态或新复合材料很有趣。材料和方法:借助L-赖氨酸的双功能氨基酸(具有沉淀铜离子约10的双功能氨基酸)和尿素添加剂制备CuO纳米结构。傅里叶变换红外(FT-IR)和拉曼光谱,X射线衍射(XRD),田间发射扫描电子显微镜(FE-SEM),透射电子显微镜(TEM),环状伏安法分析和不同的脉冲脉冲伏特仪(DPV)。结果:XRD表明合成的CUO由具有单斜结构的多岩晶体系统组成。TEM直方图显示CUO纳米结构的平均直径为91 nm。CuO纳米结构上加载在氧化石墨烯酸化的lisdexamine dimelate(LIS)上,以实现CUO/ LIS-G-GO复合材料。cuo/lis-g-go被放在玻璃碳电极(GCE)上,以开发新的纳米传感器,以以具有成本效益的方式检测葡萄糖,而无需使用葡萄糖氧化酶或Nafion。磷酸盐缓冲液(PBS)和模拟体液(SBF)溶液是葡萄糖检测的培养基。生物传感器的灵敏度为34.7 µ µ A/cm 2 mm,葡萄糖浓度为10 mm。上述传感器在存在多巴胺和果糖存在下未检测到任何干扰。此外,研究了生物传感器的可重复性,测量的标准偏差(RSD)为3.93%。结论:新的纳米结构CuO与Lis-G-Go合成,并将新的CuO/ Lis-G-GO/ GCE生物传感器用于检测葡萄糖。34.7 µA/cm 2 mm的敏感性,而没有任何干扰多巴胺和果糖的干扰,这使该系统是检测葡萄糖的热门传感器。
摘要:与磁致伸缩系数高但矫顽场大的多晶 Fe 基合金和磁致伸缩系数较小的 Co 基非晶合金(λ s = − 3 至 − 5 ppm)相比,Fe 基非晶材料具有高饱和磁致伸缩系数(λ s = 20–40 ppm)和低矫顽场,为磁传感器、执行器和磁致伸缩换能器提供了新的机会。增材层制造 (ALM) 为更复杂的净成型设计提供了一种新的制造方法。本文回顾了用于制造 Fe 基非晶磁性材料的两种不同的 ALM 技术,包括结构和磁性能。选择性激光熔化 (SLM)——一种粉末床熔合技术——和激光工程净成型 (LENS)——一种定向能量沉积方法——均已用于制造非晶态合金,因为它们在文献中具有高可用性和低成本。利用 SLM 技术引入了两种不同的扫描策略。第一种策略是双扫描策略,可实现 96% 的最大相对密度和 1.22 T 的相应磁饱和度。它还将玻璃相含量提高了 47% 的数量级,并提高了磁性能(将矫顽力降低至 1591.5 A/m,将磁导率提高至 100 Hz 时的 100 左右)。第二种是新颖的扫描策略,涉及两步熔化:初步激光熔化和短脉冲非晶化。这使非晶相分数增加到高达 89.6%,相对密度增加到 94.1%,并将矫顽力降低到 238 A/m。另一方面,尽管 LENS 技术具有提供优异的机械性能、可控的成分和微观结构等优点,但由于其几何精度较低(0.25 毫米)且表面质量较低,因此在非晶态合金生产中的应用并不像 SLM 那样广泛。因此,它通常用于复杂程度较低的大型部件及其修复,由于尺寸限制而限制了非晶态合金的生产。本文全面回顾了这些用于 Fe 基非晶态磁性材料的技术。
