摘要 。本文的前两部分(分别是 https://philpapers.org/rec/PENFLT-2 和 https://philpapers.org/rec/PENFLT-3)表明,费马最后定理 (FLT) 在希尔伯特算术中的狭义和广义解释可以在第一部分中通过归纳法提出证明,在第二部分中通过 Kochen-Specker 定理提出证明。同样的解释也适用于基于格里森定理的 FLT 证明,部分类似于第二部分中的证明。希尔伯特空间子空间的 (概率) 测度的概念,尤其是其唯一性,可以明确地与偏代数或不可通约性联系起来,或者在广义上解释为希尔伯特算术的两个对偶分支的关系。对最后一个关系的研究使得 FLT 和格里森定理在某种意义上等同于两个对偶对应物,前者可以从后者推出,反之亦然,但需要附加条件,即算术对集合论的哥德尔不完备性。反过来,量子比特希尔伯特空间本身也可以通过 FLT 和格里森定理的统一来解释。利用广义的希尔伯特算术证明 FLT 这样的数论基本结果可以推广到“量子数论”的概念。通过“非标准双射”及其两个与信息论内在关联的对偶分支,可以从数学上研究皮亚诺算术从希尔伯特算术的起源。然后,无穷小分析及其革命性的物理学应用也可以在更广泛的背景下重新实现,例如,作为对时间物理量(分别是物理学中考虑的任何时间过程中的时间导数)出现方式的探索。最后,结果允许对任何层次结构如何产生或改变自身进行哲学反思,这仅归功于其对偶和幂等对应物。关键词:完备性、格里森定理、费马最后定理、希尔伯特算术、幂等性和层次结构、科亨和斯佩克定理、非标准双射、皮亚诺算术、量子信息
已经开发出基于人工智能的自动格里森分级解决方案,以协助病理学家进行快速定量评估,但跨各种扫描仪的推广以及使用来自最终用户的新注释数据不断更新人工智能模型仍然是该领域的一个关键瓶颈。我们提出了一种全面的人工智能辅助格里森分级数字病理学工作流程,结合了图像质量检查软件 A!magQC、基于云的注释平台 A!HistoNotes 和病理学家-人工智能交互 (PAI) 策略。为了演示和验证该流程,我们将其用于从 5 台扫描仪获得的前列腺样本进行格里森分级。在对 Akoya Biosciences 扫描仪扫描的 132 例前列腺切除标本进行训练后,对 55 例前列腺切除标本和 156 例活检标本进行验证,结果显示前列腺切除标本的 Gleason 分级灵敏度为 85%,特异性为 96%,F1 得分为 78%,活检标本的肿瘤检测灵敏度为 96%。对于其他 4 台扫描仪扫描的图像,采用我们的泛化解决方案后,Gleason 模式检测的平均 F1 得分从 67% 提高到 75%。在与来自新加坡和中国的 5 名病理学家进行的临床试验中,我们的流程将 Gleason 评分速度提高了 43%。此外,它通过半自动注释将注释时间缩短了 60%,从而通过增量学习提高了模型性能。
活检中前列腺癌的诊断和格里森分级对于前列腺癌男性的临床管理至关重要。尽管如此,病理学家之间的高度分级差异性导致治疗不足和过度治疗的可能性。人工智能 (AI) 系统在协助病理学家进行格里森分级方面显示出良好的前景,这可能有助于解决这一问题。在这篇小型评论中,我们重点介绍了有关癌症检测和格里森分级的人工智能系统开发的研究,并讨论了广泛临床实施所需的进展以及预期的未来发展。患者摘要:这篇小型评论总结了与验证人工智能 (AI) 辅助癌症检测和活检中前列腺癌格里森分级有关的证据,并强调了广泛临床实施之前所需的其余步骤。我们发现,尽管有强有力的证据表明人工智能能够像经验丰富的泌尿病理学家一样进行格里森分级,但仍需要做更多的工作来确保人工智能系统在不同患者群体、数字化平台和病理实验室的不同环境中的结果准确性。© 2021 作者。由 Elsevier BV 代表欧洲泌尿外科协会出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons. org/licenses/by/4.0/)。
自60年前开始的空间开始以来的人口爆炸,大约有9,800颗卫星被放置在轨道上,仍然有大约6,700个卫星,截至2021年3月,大约3,100个仍在运行。3在2019年,几家商业公司提出了卫星星座的潜力从1,000到30,000颗卫星不等,一代人的轨道总计75,000或更多的新卫星。 几乎每天都会发生拟议卫星的数量,到2030年,最近的一些估计在轨道上有100,000多个卫星。 在如此短的时间内,卫星数量的预期增加将导致碰撞风险大幅增加。 由此产生的空间碎片以及新车辆本身将挑战太空环境的整体可持续性。 虽然不太可能所有计划的3在2019年,几家商业公司提出了卫星星座的潜力从1,000到30,000颗卫星不等,一代人的轨道总计75,000或更多的新卫星。几乎每天都会发生拟议卫星的数量,到2030年,最近的一些估计在轨道上有100,000多个卫星。在如此短的时间内,卫星数量的预期增加将导致碰撞风险大幅增加。由此产生的空间碎片以及新车辆本身将挑战太空环境的整体可持续性。虽然不太可能所有计划的
摘要 Gleason 评分是前列腺癌患者最重要的预后指标,但其存在显著的观察者差异。基于深度学习的人工智能 (AI) 系统可以在 Gleason 分级中达到病理学家级别的表现。但是,如果存在伪影、异物组织或其他异常,此类系统的性能可能会下降。病理学家将他们的专业知识与 AI 系统的反馈相结合,可以产生协同效应,其表现优于个体病理学家和系统。尽管 AI 辅助被大肆宣传,但病理学领域关于这一主题的现有文献有限。我们研究了 AI 辅助对前列腺活检分级的价值。一个由 14 名观察员组成的小组在使用和不使用 AI 辅助的情况下对 160 次活检进行了分级。使用 AI,小组与专家参考标准的一致性显著提高(二次加权 Cohen 's kappa,0.799 vs. 0.872;p = 0.019)。在 87 个病例的外部验证集中,小组与前列腺病理学国际专家小组的一致性显著提高(二次加权 Cohen 's kappa,0.733 vs. 0.786;p = 0.003)。在两个实验中,从群体层面来看,AI 辅助病理学家的表现都优于无辅助病理学家和独立的 AI 系统。我们的结果表明 AI 系统具有 Gleason 分级的潜力,但更重要的是,结果表明了病理学家与 AI 协同作用的好处。